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Abstract: Scene alignment for images recorded from different viewpoints is a challenging task, especially considering

strong parallax effects. This work proposes a diorama-box model for a 2.5D hierarchical alignment approach,

which is specifically designed for image registration from a moving vehicle using a stereo camera. For this

purpose, the Stixel World algorithm is used to partition the scene into super-pixels, which are transformed

to 3D. This model is further refined by assigning a slanting orientation to each stixel and by interpolating

between stixels, to prevent gaps in the 3D model. The resulting alignment shows promising results, where

under normal viewing conditions, more than 96% of all annotated points are registered with an alignment

error up to 5 pixels at a resolution of 1920× 1440 pixels, executing at near-real time performance (4 fps) for

the intended application.

1 INTRODUCTION

Image registration is the process of placing two

images captured from different viewpoints in the

same coordinate system. It ensures that pixels rep-

resenting the same world point in both images, map

to the same image coordinates after successful regis-

tration. This is relevant in many applications, such

as medical image analysis, object recognition, image

stitching and change detection (van de Wouw et al.,

2016). Especially for the latter application, an accu-

rate alignment is crucial as it enables pixel-wise com-

parisons between the two images.

Image registration becomes quite challenging

when considering images acquired from a moving ve-

hicle in an urban environment, which is the focus

of this work. In a repetitive capturing scenario, im-

ages are typically acquired from different viewpoints,

while significant time may have passed between cap-

turing the historic image and the live image. This

poses additional challenges, where the registration

now has to cope with dynamic appearance changes

of the scene, as well as strong parallax effects.

Appearance changes are generally unavoidable

when recording outdoors at different moments in

time. Changes in lighting and different weather con-

ditions may significantly affect the colors and con-

trast of a scene. Furthermore, there may be dynamic

changes in the scene, such as other traffic participants

and objects placed in or removed from the scene in

between the recordings moments. Although such an

object may only exist in either the historic image or

the live image, it should still be aligned to the cor-

rect part of the other image. As a result, regular flow-

based methods cannot be used to align such objects as

they are not present in both images (Werlberger et al.,

2010).

Another challenge is parallax, which results in a

difference between the apparent positions of an object

viewed along two different lines of sight, e.g. when

images are captured from different viewpoints. As

a consequence, the relative position and even the or-

dering of objects in the historic and live image may

change when capturing the same scene from two dif-

ferent viewpoints. This is depicted in Figure 1, where

the object ordering changes from A-B-C-D to A-C-

B-D. This change in relative positions of the objects,

depending on their 3D position in the scene, can no

longer be handled by a global-affine transformation

of the images.

To overcome the parallax issue, the registration

problem can be solved in 3D, where the positioning

of objects is uniquely defined. By aligning the 3D

point clouds and projecting the results back to 2D,

parallax is handled correctly. However, since our 3D

points are estimated from a stereo camera using dis-



Figure 1: Sample images showing the same scene from dif-
ferent viewpoints. Note the perspective distortion and the
parallax effect, i.e. the same lighting pole C is located in
front of A in the left image, while it is in front of B in the
right image.

parity estimation, they are not sufficiently accurate for

a direct projection. Instead, a model-based projection

is required that is robust against noise in the 3D-point

cloud. For this purpose and as an initial step, we adopt

the hierarchical 2.5D alignment approach introduced

in (van de Wouw et al., 2016), which is explained

in Section 3. This adopted approach is only able to

align the non-linear ground surface, but not the ob-

jects above the ground surface. Therefore and as a

next step, the main focus of this work is to extend the

alignment to the entire scene, including 3D objects.

The remainder of this paper is organized as fol-

lows. In the next section, the proposed method is laid

out to related work on image registration under view-

point differences and 3D scene modeling. Section 3

summarizes the baseline image registration method.

Section 4 details the proposed method, followed by a

validation of our method in Section 5. A discussion

on the application of the proposed work is given in

Section 6. Finally, Section 7 presents conclusions.

2 Related work

2.1 Image registration under viewpoint

differences

To handle perspective distortion during alignment of

images from different viewpoints, several approaches

exist. The first approach involves segmenting the 2D

scene into sufficiently small parts, such that for each

part an individual affine transformation exists to reg-

ister it to the target image or to a common coordi-

nate system. For this purpose, the authors of (Zhang

et al., 2016) and (Su and Lai, 2015) use a mesh-

based approach, where they divide the image into a

grid and for each cell find a local affine transforma-

tion. This way, they can accommodate moderate de-

viations from planar structures. Lou and Gevers (Lou

and Gevers, 2014) first segment the scene into pla-

nar regions and find an affine transformation for ev-

ery plane, in theory allowing to prevent the parallax

issues illustrated in Figure 1. Although these methods

show promising results, they cannot be performed in

real-time, making them less suited to be used while

driving, which is the aim of our work.

Another approach is to solve the alignment in 3D.

As a change in viewpoint does not alter the relative

3D positions of the objects in the scene, the prob-

lem simplifies to estimating a rigid transformation.

The aligned 3D point cloud is then projected back

to 2D, such that the historic scene is rendered from

the live camera viewpoint. The naive approach would

transform each individual point in the point cloud

and project it to 2D separately. However, this causes

significant holes in the resulting image, which be-

come more apparent when viewpoint differences are

considered. Alternatively, a hierarchical 2.5D align-

ment (van de Wouw et al., 2016) can be employed.

This method applies a rigid 3D transformation to a

textured polygon model of the historic scene, after

which the transformed model is projected back to 2D.

This results in a registered image without holes in

which parallax is handled correctly, i.e. the objects

are in the correct positions in the 2D image. More-

over, this strategy allows for real-time execution while

driving. For this reason, we build further upon this

method in our current work.

2.2 3D scene modeling

Projecting textured surfaces outperforms per-pixel

processing, since it facilitates addressing holes and

noise in the depth data. For this purpose, we require a

3D surface model for the full scene. In the field of 3D

reconstruction, meshes are a common data represen-

tation. These meshes are often acquired via a Delau-

nay triangulation of measured point clouds. Typically,

these algorithms aim at single object reconstruction

(such as digitizing statues and the like, for cultural

preservation), but several methods are also employed

in our context: outdoor scene modeling. These sys-

tems achieve a high level of geometric accuracy in the

data that is captured close to the objects in the scene,

e.g. facade modeling with accurate ridges and win-

dow stills, etc. (Salman and Yvinec, 2010) (Chauve

et al., 2010), or detailed rock-mass-surface and stair-

cases (Maiti and Chakravarty, 2016). However, the

processing times of these algorithms lies in the or-

der of seconds (Salman and Yvinec, 2010) (Maiti and

Chakravarty, 2016) or even minutes (Labatut et al.,

2009) (Chauve et al., 2010) per scene, which does not

satisfy our real-time processing constraints. More-

over, our system does not need that level of detail.

Faster pipelines exist, but typically provide 3D mod-



els that are too sparse or coarse (Natour et al., 2015),

whereas we need dense modeling.

Alternative modeling strategies can be derived

from algorithms that are predominantly designed

for image segmentation instead of 3D modeling,

namely: super-pixel methods. In general, they

have been designed to process 2D color images,

such as LV (Felzenszwalb and Huttenlocher, 2004),

SLIC (Achanta et al., 2012) and SEOF (Veksler et al.,

2010). Each of these has its own various extensions to

incorporate 2.5D or point cloud data. Extensions for

LV involve LVPCS (Strom et al., 2010), MLVS (San-

berg et al., 2013) and GBIS+D (Cordts et al., 2016),

SLIC is extended in StereoSLIC (Yamaguchi et al.,

2014), and SEOF is modified into SEOF+D (Cordts

et al., 2016). Although all of these methods can pro-

vide relevant super-pixel segmentations, the resulting

super-pixels are shaped irregularly, yielding an in-

efficient representation. Moreover, they need to be

calculated on the whole image at once. For trading

off modeling flexibility versus optimality and com-

putational complexity, the Stixel World has been in-

troduced (Pfeiffer, 2012). This probabilistic super-

pixel method has been designed specifically for the

context of intelligent vehicles, aiming at providing a

compact yet robust representation of traffic scenes in

front of a vehicle, which can be generated efficiently

in real time. The Stixel World algorithm relies on dis-

parity data to partition scenes into vertically stacked,

rectangular patches of a certain height and 3D posi-

tion with respect to the camera sensor. These rect-

angular patches are labeled as either ground or ob-

stacle during the segmentation process, thereby pro-

viding a semantic segmentation as well as a 3D rep-

resentation. Moreover, stixels can be computed effi-

ciently using Dynamic Programming, where multiple

columns of disparity measurements are processed in

parallel (Pfeiffer, 2012).

Another specialized scene modeling method for

intelligent vehicles relies on 3D voxels (Broggi et al.,

2013). It generates and removes cubic voxels to han-

dle the dynamic aspect of a traffic scene and stores

them efficiently in an octree-based fashion. However,

it relies on tracking the voxels over time and does not

employ any real-world regularization. Since our sys-

tem operates at a low frame rate (±6 fps), but at a

much higher resolution (above HD instead of VGA),

this method is likely to provide noisy and spurious

false detections.

Considering the methods described above, we

propose to avoid modeling of the entire scene into an

expensive detailed mesh, or in a voxel grid without

strict regularization. Instead, we introduce a simpli-

fied 3D model, which we refer to as the ’diorama-box

model’, shown in Figure 3. This model extends the

non-linear surface model from (van de Wouw et al.,

2016) with 3D objects, where objects are modeled

by one or more slanted planar regions (in 3D) esti-

mated from a Stixel World representation. The pro-

posed model allows for real-time computation.

The main contributions of this paper are as fol-

lows. First, we introduce an efficient 3D scene model

to be used in the 2.5D hierarchical alignment ap-

proach (van de Wouw et al., 2016), by including

super-pixels obtained through the Stixel World algo-

rithm into the existing ground model. Second, we

improve the consistency of the 3D model by adapt-

ing the obtained stixel-based model. Finally, we

validate the proposed model by employing it in our

scene-alignment approach and generally show that the

registration error is below 5 pixels for HD+ images

(1920×1440 pixels).

3 Baseline image registration

The 2.5D hierarchical alignment approach (van de

Wouw et al., 2016) aims at aligning two images of

the same scene that are captured from different view-

points. It builds on the idea that registration errors

due to parallax can be avoided when aligning the 3D

point clouds, instead of directly transforming the 2D

images. For this purpose, a 3D scene model of the his-

toric scene is constructed onto which the historic tex-

ture is projected. Next, this textured model is trans-

formed to the coordinate system of the live image.

The transformed model is then projected back to 2D,

which renders the historic image as if seen by the

live camera. Finally, small misalignments after initial

registration are corrected by a registration refinement

based on optical flow. This approach is summarized

in Figure 2.

The 3D transformation (pose) estimation from

Figure 2 lies outside the scope of this paper and is de-

scribed in more detail in (van de Wouw et al., 2017).

The current work focuses on the 3D scene reconstruc-

tion and aims at registering the historic image to the

live image in 2D.

It should be noted that we are not necessarily in-

terested in 3D model accuracy, as long as the model

is able to simulate the 2D aligned image with a low

registration error. In a similar fashion, the pose esti-

mation also minimizes the registration error after pro-

jection to 2D, instead of establishing the 3D pose in

world coordinates.
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Figure 2: Complete overview of the 2.5D hierarchical align-
ment approach. The red block is the focus of this paper,
where we aim at minimizing the registration error in 2D.

(a) (b)

Figure 3: (a) Diorama-box model representing the scene by
superimposing flat objects on a ground plane. (b) Example
visualization of the resulting model.

4 Approach

We introduce a diorama-box model, as illustrated

in Figure 3, to be used as the historic 3D scene model

in the alignment approach described in Section 3.

This model is a simplification of the real world, where

objects are modeled by flat planes that are perpendic-

ular to the optical axis. This approach is especially

suited for noisy depth data, such as captured by pas-

sive stereo cameras, which is insufficiently accurate

for constructing a full 3D mesh of the scene. Fig-

ure 4 shows an example of such a point cloud as well

as a zoom on one of the trees. This figure clearly

demonstrates that it is not feasible to directly retrieve

the 3D shape of the tree. Instead, we propose to ap-

proximate all objects above the ground surface by a

planar structure, which is implemented efficiently by

using the Stixel World algorithm (Pfeiffer, 2012) and

projecting the stixels to 3D. In the Stixel World algo-

rithm, the image is first divided into columns of fixed

width. Based on the disparity estimates, each column

is then split into vertically-stacked stixels, i.e. rectan-

gular superpixels, using a maximum a-posteriori op-

timization. This process is solved efficiently with dy-

namic programming and results in a collection of stix-

els, each with a label to contain either ground or ob-

stacle content. In this work, we are only interested in

the obstacle stixels.

(a) (b)

Figure 4: (a) Example point cloud derived from stereo
matching and (b) Zoomed view from the side of the tree,
where depth inaccuracies deform its 3D shape.

4.1 Projecting stixels to 3D

The Stixel World algorithm results in a set of rect-

angular super-pixels. As depth information is avail-

able, it can be used to map these super-pixels to 3D.

However, directly projecting each stixel to 3D causes

every stixel to be fronto-parallel, i.e. perpendicular

to the optical axis. Obviously, this might not corre-

spond to the actual orientation of the objects being

modeled. Therefore, we slant each 3D stixel to better

represent the actual objects. Stixel slanting is con-

ceptually visualized in Figure 5. This slanting im-

proves the model accuracy when rendering to a differ-

ent viewpoint. The degree of slanting for each stixel

is obtained through a least-squares plane fit on the dis-

parity values within the stixel.

Top-view stixel illustration. Legend: 
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Figure 5: Conceptual visualization of stixel slanting and in-
terpolation. Slanting ensures that the stixels follow the ac-
tual shape of the object more accurately, while interpolation
fills the gaps between the 3D stixels.



4.2 3D stixel interpolation

Although stixels connect in 2D, they do not neces-

sarily connect in 3D for two reasons. First, looking

from the camera point-of-view, camera rays diverge,

meaning adjacent pixels may map to world points,

which are far apart. Second, as each stixel is assigned

a slanting orientation, the stixel boundaries may not

lie at the same depth. This causes holes in the 3D

model when viewed from a different camera pose, as

depicted in Figure 6(a). This figure clearly shows that

holes appear, when projecting the 3D stixels to a dif-

ferent viewpoint without interpolation.

To counter this effect, we interpolate between ad-

jacent stixels as shown in Figure 5, where we add a

new stixel that connects two adjacent stixels, if they

are sufficiently close to each other. The effect on the

aligned image is shown in Figure 6(b).

(a) (b)

Figure 6: Resulting aligned image (a) without stixel inter-
polation and (b) with stixel interpolation, when rendered to
a synthetic viewpoint.

Although computing the stixel model at a lower

resolution may decrease the number of holes in the

resulting synthesized image, this would significantly

decrease the capability to model thin objects. There-

fore we consider the proposed stixel interpolation bet-

ter suited to reduce holes, especially because the ad-

ditional computation time is negligible.

4.3 Rejecting invalid pixels

In order to capture thin objects inside a stixel, we

choose thin stixels with a width of only 7 pixels. It

may still occur that an object only partially covers a

stixel, since the horizontal grid is fixed. The result-

ing stixel may therefore contain both foreground and

background pixels. Figure 7(a) shows an example of

background pixels that are incorrectly treated as part

of the tree. To correct for such errors, we adapt the

texture map prior to projecting it onto the 3D model.

Here, we label all pixels inside a stixel that do not sat-

isfy the estimated slanting orientation, to be invalid.

The invalid background pixels are then removed and

replaced by black pixels in the aligned 2D image (Fig-

ure 7(b)).

(a) (b)

Figure 7: (a) Aligned image part where background pixels
are contained inside a stixel and (b) the same image when
pixels that do not satisfy the slanting orientation are set to
invalid. This example uses wider stixels for visualization
purposes.

5 Experiments & Results

The proposed registration approach using the box-

diorama model has been validated on two separate

datasets. The first dataset features many slanted sur-

faces, such as shown in Figure 6. The purpose of

this dataset is to specifically evaluate the added value

of our stixel slanting and interpolation adaptations

within the proposed registration approach. Next, an

additional dataset was recorded that features different

lateral displacements, in order to evaluate the effect

of viewpoint differences between the live and historic

recordings.

To validate the proposed registration approach, we

evaluate it on pairs of videos, which were recorded in

both urban and industrial environments. Each video

pair features a historic recording and a live recording

of the same scene, acquired at a different moment in

time. These videos were recorded under realistic con-

ditions, by mounting the entire system on our driving

prototype vehicle. This prototype (Figure 8) features

a high-resolution stereo camera (1920× 1440 pixels)

as well as a GPS/IMU device for accurate georefer-

encing of all recorded images. While driving, live and

historic images featuring the same scene from differ-

ent viewpoints are paired using GPS position and ve-

hicle orientation. Next, depth measurements are ob-

tained through disparity estimation, yielding 3D in-

formation for both the live and historic scene. At this

point, the baseline alignment approach (Section 3) is

applied, which also includes the proposed 3D scene

model (Section 4).



Figure 8: Prototype vehicle used for our experiments, fea-
turing a stereo camera with 1920 × 1440 pixel resolution
and a GPS/IMU positioning system for georeferencing the
images.

5.1 Performance metrics

As this work aims at registering the live and historic

images in 2D, we measure the alignment error be-

tween the live image and the aligned historic image.

For the first dataset, we have manually annotated ap-

proximately 360 characteristic points in the set of live

images, after which the exact same points were an-

notated in the registered historic images for every ex-

periment. This resulted in a total of 1,800 manually

annotated points for our first dataset. For the second

dataset, we manually annotated 130 points for each

displacement, resulting in a total of 650 annotations

for this dataset. We employ the Euclidean distance (in

pixels) between the annotated points in the live and

registered images as a metric for the alignment accu-

racy of the proposed registration approach, including

the box-diorama model.

The registration accuracy is defined as the percent-

age of annotations with an alignment error up to 5 pix-

els on images having 1920 × 1440 pixels. All pre-

sented results are based on the initial registration up

to and including Stage 3 of the registration approach

in Figure 2.

5.2 Evaluation

Figure 9 shows the registration accuracy when the

proposed diorama-box model is used as a 3D model

for scene alignment on our first dataset. Even with-

out any post-processing, we achieve an accuracy of

90% after initial alignment. When slanting is not con-

sidered, the stixel interpolation improves the registra-

tion accuracy from 90% to 93%. The stixel slanting

further improves the accuracy to 96%. This is also

reflected in Figure 10, which even shows that most

annotations have an alignment error below 2 pixels.

Moreover, Figure 9 shows that already 79% of all an-

notations have an alignment error of 1 pixel or less on

our first dataset.
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Figure 9: Registration accuracy plotted against the maxi-
mum alignment error, showing the cumulative amount of
annotations satisfying a certain maximum alignment error.

Figure 10 portrays the histograms of the alignment

errors. The reader may wonder about the 15+ pixel

registration errors in the figure. These are mostly an-

notated points that could not be registered, because

that specific part of an object was not covered by a

stixel, or because no reliable depth data was available

in that area. Such ’missing’ points are assigned to the

15+ bin.
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Figure 10: Alignment error histograms when the 3D model
from Section 4 uses (a) stixels without slanting or interpo-
lation, (b) stixels with slanting but without interpolation, (c)
without slanting but with interpolation, (d) with both stixel
slanting and interpolation.



Table 1: Registration accuracy for different lateral displacements of the vehicle. In these experiments, we use annotations up
to a distance of 50 m. Figure 11 shows typical registration examples for each lateral displacement.

lateral 0cm lateral 160cm lateral 350cm lateral 530cm lateral 700cm

Proposed 97% 90% 71% 53% 20%

5.3 Effect of lateral displacement

This experiment is performed on the second dataset,

which features different lateral displacements, i.e.

different offsets between the live and historic record-

ing, perpendicular to the viewing direction. Such a

lateral displacement is caused by different driving tra-

jectories between the live and historic recordings, e.g.

keeping to a different driving lane. This causes signif-

icant viewpoint differences, as shown in Figure 1. The

goal of this experiment is to identify the maximum al-

lowed driving displacement during live operation.

Table 1 shows the registration accuracy for differ-

ent lateral displacements for the proposed registration

approach. We note that under ideal conditions, i.e.

when the live and historic driving trajectory are al-

most identical, the proposed model is able to accu-

rately align 97% of all annotated points. Even at dis-

placements of 160 cm, the system is still able to align

90% of the points with an registration error of at most

5 pixels.

The decrease in registration accuracy for larger

lateral displacements can be explained by the limited

depth accuracy of our disparity estimation algorithm,

which is outside the scope of this paper. At a distance

of 40 meters, the smallest possible disparity step cor-

responds to a jump of 25 cm. Especially at larger dis-

tances, this leads to minor inaccuracies in the depth

estimates of the stixels and hence the 3D positioning

within our scene model. This is not a problem for

small viewpoints variations (Column 2, Table 1), but

when viewed from a significantly different viewpoint,

the objects will be projected to a different coordinate

in the registered image, i.e. will be misaligned.

The figures in Table 2 show typical examples of

the input and output of our registration framework for

different lateral displacements. Some holes in the reg-

istered images, such as part of the lantern pole miss-

ing in the second column of the table, are caused by

lack of any depth estimates in that area of the disparity

map. Without depth data, no 3D object can be mod-

eled at that location. In the case of the 700-cm dis-

placement (Column 6), the only objects that remain

in the overlapping Field-of-View lie too far away to

be modeled with sufficient accuracy, hence the lower

accuracy in Column 6 of Table 1.

We argue that the proposed model performs well

for small to medium lateral displacements, e.g. up

to and including 160 cm, while it is still able to align

the majority of the scene for displacements of 350 cm,

e.g. the typical distance between adjacent driving

lanes. We note that displacements above 4 m exceed

the operational range of the proposed registration sys-

tem, although part of the scene can still be aligned for

such extreme trajectory differences. Note from Ta-

ble 2, Column 6, that the overlapping Field-of-View

of the live and historic view has become too small and

lies in the area where accurate depth information is no

longer available.

5.4 Timing

Table 3 shows the execution times of the alignment

approach when we extend the baseline method in Fig-

ure 2 with the proposed diorama-box model. Times

are shown for both separate execution and under full

CPU/GPU load, i.e. when running all pipestages si-

multaneously. Considering our HD+ stereo camera is

restricted to 6 fps, the pipelined implementation op-

erates at near real-time speed with 4 fps (including

scheduling overhead).

t (ms)
t (ms)

full load

Pipelined Stage 1:

GPU: Depth estimation 90 153

Pipelined Stage 2

CPU: Ground mesh* 130 200

GPU: 3D stixels mesh* 125 160

Pipelined Stage 3

CPU: Find 3D pose diff 100 120

GPU: Viewpoint synthesis 30 46

Table 3: Execution times of the proposed registration ap-
proach with the box-diorama model included. Stage 1 and
2 involve the 3D Scene reconstruction from Figure 2, while
Stage 3 both estimates the 3D transformation and simulates
the live viewpoint (Block 2 and 3 in Fig. 2). The third col-
umn shows the execution times when the different pipeline
stages are executed simultaneously, i.e. under full load. The
(*) denotes that tasks can execute in parallel on CPU and
GPU.
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Table 2: Examples of the proposed registration for different lateral displacements. The first row illustrates the target images.
The second and third row show the source images and their corresponding disparitiy maps, respectively. The fourth row
portrays the aligned images as rendered using the proposed registration approach, where black denotes areas outside of
the Field-of-View of the historic camera. Finally, the last row shows the alignment error histograms for a specific lateral
displacement using all images in the dataset with that displacement.

6 Discussion & Recommendations

We have introduced a diorama-box model for

aligning images with viewpoint differences. The pro-

posed work is part of a larger change detection system

comparable to (van de Wouw et al., 2016), which aims

at finding suspicious changes in the environment of

undefined shape and nature, w.r.t. a previous record-

ing. Scene alignment is a crucial aspect of this sys-

tem, since without proper alignment the scene can-

not be compared and changes may be missed. By

extending the 3D ground-surface model of the base-

line system with 3D objects, the operational range of

the change detection system is significantly improved,

where the analysis is no longer limited to the ground

surface. Figure 11 shows the aligned images with and

without the proposed model, clearly showing the im-

proved alignment coverage, i.e. a larger part of the

scene can be exploited for change detection.

Although the proposed work has similarities with

the multi-view registration approaches discussed in

Section 2, we cannot use the datasets introduced in

their work. These datasets typically feature mono

images from different viewpoint, whereas we need

stereo images or a disparity map in our approach.

It was observed that rejecting invalid pixels within

stixels occasionally results in small holes in the reg-

istered images at locations where no disparity esti-

mate is available. Although such holes can mostly be

avoided by using a morphological-closing filter prior

to rejecting the pixels, some holes may persist. How-

ever, the downside of having small holes in the regis-

tered image did not outweigh the benefit of having

a cleaner texture projection. We plan to look into

guided-image filtering to prevent such holes and fur-

ther refine the stixel boundaries in future work.

The current disparity estimation, which is outside

the scope of this work, is noisy and has a very lim-

ited sub-pixel resolution. We hypothesize that a more

expensive disparity estimation algorithm, increased

baseline or zoom-lenses will improve the depth accu-

racy, which in turn will extend the operational range

of the proposed 3D model.



(a) (b)

(c)

Figure 11: Aligned images when using (a) ground-surface
model from (van de Wouw et al., 2016), (b) proposed model
including the 3D objects. Subfigure (c) shows an overlay of
the live image (cyan) and the aligned historic scene (red).

7 Conclusion

We have introduced a diorama-box model for

aligning images acquired from a moving vehicle. The

proposed model extends the non-linear ground sur-

face model (van de Wouw et al., 2016) with a model

of the 3D objects in the scene. For this purpose, the

Stixel World algorithm is used to segment the scene

into super-pixels, which are projected to 3D to form

an obstacle model. The consistency of the stixel-

based model is improved by assigning a slanting ori-

entation to each 3D stixel and by interpolating be-

tween the stixels to fill gaps in the 3D model. Conse-

quently, registration accuracy is increased by 6%. As

a further improvement of the algorithm, background

pixels contained in object-related stixels are removed

by checking their consistency with the stixel-slanting

orientation. This improvement prevents ghosting ef-

fects, due to falsely projected background pixels.

The resulting alignment framework shows good

results for typical driving scenarios, in which both

live and historic recordings were acquired from the

same driving lane. In this case, 96% of all manu-

ally annotated points are registered with an alignment

error up to 5 pixels for images with a resolution of

1920× 1440 pixels, where even 79% of the annota-

tions have an error of unity pixel or lower. Even when

driving in an adjacent lane, the system is able to ac-

curately align 71% of all annotated points.

It was found that the disparity resolution of the

depth map, i.e. the lack of sub-pixel accuracy, limits

the accuracy of the 3D model, making it less effective

for displacements above 4 meters. Nevertheless, the

proposed work significantly improves the operational

range of the real-time change detection system, which

now covers the full 3D scene, instead of only the

ground plane. Higher accuracies and/or performance

of the change detection system can be achieved when

important parameters are improved, such as lenses

and/or a larger baseline, together with a more accu-

rate depth estimation algorithm.
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