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Abstract—This paper presents a vision-based collision-warning
system for ADAS in intelligent vehicles, with a focus on urban
scenarios. In most current systems, collision warnings are based
on radar, or on monocular vision using pattern recognition. Since
detecting collisions is a core functionality of intelligent vehicles,
redundancy is essential, so that we explore the use of stereo
vision. First, our approach is generic and class-agnostic, since it
can detect general obstacles that are on a colliding path with
the ego-vehicle without relying on semantic information. The
framework estimates disparity and flow from a stereo video
stream and calculates stixels. Then, the second contribution is the
use of the new asteroids concept as a consecutive step. This step
samples particles based on a probabilistic uncertainty analysis
of the measurement process to model potential collisions. Third,
this is all enclosed in a Bayesian histogram filter around a newly
introduced time-to-collision versus angle-of-impact state space.
The evaluation shows that the system correctly avoids any false
warnings on the real-world KITTI dataset, detects all collisions in
a newly simulated dataset when the obstacle is higher than 0.4 m,
and performs excellent on our new qualitative real-world data
with near-collisions, both in daytime and nighttime conditions.

Index Terms—ADAS, Collision Warning, Time to Collision,
Stereo vision, Bayesian Histogram Filter

I. INTRODUCTION

THIS paper presents a stereo vision-based collision-
warning system for assisted or automated driving. Started

in the past, and recently boosted by new technology, obstacle
or drivable space detection have been an active research area
for intelligent vehicles [1], [2], together with early extensions
to control [3]. An objective of this research is to reduce
traffic accidents, predominantly by avoiding collisions. This
requires detecting potential collisions accurately and timely,
irrespective of whether the avoidance will be executed by a
human driver or an automated control system.

The most advanced vision-based collision avoidance sys-
tems currently presented in literature rely on a combination of
sensor modalities, like LIDAR, V2I or V2V communication,
Radar, GNSS+IMU, cameras and HD maps [4]–[7]. The
benefit of such an approach is that it facilitates redundancy
over modalities in the perception system of a car. This is an
important vehicle safety aspect for real-world applicability [5],
e.g. to reduce the effect of sensor malfunctioning or to remove
blind spots in the perception of the surroundings.
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Fig. 1. Illustrating ASTEROIDS in action: generating a collision warning at
night (top left) from noisy stixels (bottom left) caused by noisy disparity (top
right); bottom right: top-down view of tracked potential obstacles.

To this end, we propose to develop a generic forward-
collision warning system using a stereo camera. Stereo cam-
eras are increasingly employed in cars with Advanced Driver
Assist Systems (ADAS), mainly for high-level semantic rea-
soning and scene-geometry estimation. Therefore, our research
looks into further exploiting stereo vision, and aims at iden-
tifying strong and weak points of a disparity-based approach.
During the past years, the so-called Stixel World algorithm
has gained momentum for efficient automotive vision analysis.
Originally, it presented an efficient representation of scene
geometry from disparity data [8]. This has been enhanced
in two ways. Taking a data view, the disparity analysis is
extended with color data [9] and probabilities of semantic
classes [10]. In a functional view, it has been extended with
e.g. dynamics [11] and object recognition [12]. In our case,
we want to exploit stixels in a collision-warning system for
urban scenarios, where different types of traffic participants
can pass close by the ego-vehicle (the ADAS-equipped car),
at maximum speeds of around 50 km/h. For this purpose, we
provide an end-to-end probabilistic method.

The benefit of a probabilistic method is that it can handle
noise from the disparity estimation process on difficult, low-
texture regions, smooth out the spatial quantization arising
from the Stixel World processing, and maintaining uncertain
measurements in the system. In addition, it facilitates fusing
information into a larger system, for instance, to complement
short-range radars that typically are employed for this task,
although this is beyond the scope of this work. Figure 1
provides an example result of our system. Summarizing, this
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paper addresses collision warning by exploiting probabilis-
tic modeling of uncertain disparity and flow measurements,
where the representation facilitates fusion with other ADAS
processes.

The key contributions of this paper can be summarized as
follows. We introduce
• a generic collision-warning system that is not limited to

predefined classes or scenarios;
• a particle-sampling strategy (asteroids) for probabilistic

analysis of noisy, dynamic disparity stixels;
• a state space that is designed specifically for collision

warnings, based on axes over impact time and angle.
Our algorithm can be employed on affordable hardware and
has no requirements on car connectivity or HD maps. Our
validation utilizes both known and new public data, featuring
both real-world and simulated data and includes scenarios at
nighttime.

The remainder of this paper is organized as follows. Sec-
tion II provides a more specific overview of related work.
Section III presents the high-level structure of our proposed
method, followed by a detailed description of the key algo-
rithmic modules in Section III. Sections IV and V present our
evaluation strategy and the corresponding results. Section VI
concludes the overall work.

II. RELATED WORK

Our research aims at exploiting stixels to generate reliable
collision warnings in an urban setting, where many and
multiple types of traffic participants (cars, pedestrians, cyclists,
buses, etc.) can pass close by to the ego-vehicle (e.g. the
ADAS-equipped car), at maximum speeds of around 50 km/h.

Stixels are vertical superpixels with fixed pixel width, which
are produced by analyzing disparity data with the Stixel
World algorithm [13]. This algorithm processes the data in
a column-based manner and divides the scene into either
ground or fronto-parallel, rectangular obstacle patches, which
are assigned a single disparity value. This forms an efficient
representation of the scene geometry and has a proven value
for different subdomains. For instance, the disparity Stixel
World has been fused with deep neural nets for both seman-
tic scene segmentation [10] and instance segmentation [14],
where stixels have been also clustered to detect and recog-
nize objects [12]. Additionally, the Stixel World analysis can
provide a supervisory function in an online training setup for
free-space segmentation [15], [16]. Given this broad promising
range of applications, we want to extend it even further
and explore the strengths and weaknesses of a stixel-based
approach to extract relevant collision-warning information.

We start from the bare disparity stixels, but aim at designing
a generic method, so that it can always benefit from the
more advanced versions of the Stixel World proposals under
development, e.g. with object clustering or semantic labels.

In related work on collision-warning systems, we have ob-
served several limitations that we mitigate or avoid altogether.
First of all, most current systems are limited to highway
scenarios [6], [7], [17]. Although those can operate at higher
vehicle speeds, the systems will not be able to deal with street

crossings, non-vehicle traffic or oncoming traffic, which is not
a fundamental limitation in our method.

Second, most collision-warning systems rely on vision with
trained pattern recognition. For instance, a MobilEye system
will only recognize cars, trucks, motorcycles, cyclists and
pedestrians, with the additional limitation to fully visible
rear-ends for vehicle detection [18]. Similarly, the system
of Cherng et al. classifies situations into five pre-defined
dangerous motions that are limited to the ego-direction (such
as cut-ins) and can handle only regularly-sized cars, just one
of which may be in view in a scenario [19]. Both these
approaches rule out handling crossing, oncoming, and passing
traffic, in contrast to our algorithm.

The mono-camera based system of Ess et al. deploys several
class-specific detectors, for instance for cars and pedestrians.
Subsequently, they rely on class-specific motion models to
predict object trajectories for enhanced accuracy [20]. In
contrast, our system can handle any tangible object, without
knowing its type. This aspect makes the system more robust
and widely applicable, since it is not limited to the set of
objects for which it was trained.

Moreover, we model objects in a very generic way and aim
at a procedure that also does not rely on high-level knowledge
such as infrastructure layout [5] or intention estimation [21]. In
the same light, we do not rely on V2V or V2I-communication
streams and/or centralized roadside compute [6], [7], but
instead focus on a pure independent ego-car strategy.

Since our framework concerns tracking elements over time
and predicting their future path, a motion model and a data-
association strategy should be selected. Models for motion
are available in different levels of complexity, varying by
the incorporation of steering angles, yaw rate, acceleration
and velocity [22], which can also be employed in parallel
and fused afterwards to handle cluttered measurements in
highly dynamic urban environments [23]. Since we aim at an
class-agnostic analysis and execute on a medium-level stixel
representation, and not on object level, we do not model
model higher order dynamics. Instead, we use simple constant-
velocity kinematics without any rotational component in this
work and rely on the power over having multiple stixels per
object and generating multiple asteroids in a probabilistic
fashion to justify this simplification. Regarding the problem
of data association for tracking, we propose a strategy similar
to the extended SORT algorithm [24], which is a box-overlap
analysis, enhanced with appearance modeling. In contrast
to [24], we simplify the appearance encoding into a histogram,
which does neither require training on class-specific examples
nor has to execute a neural net during the association process.

These constraints will inherently limit the time horizon
within which our predictions are reliable. Our goal is to
explore these boundaries and identify the strengths and weak-
nesses of the stixel-based approach, rather than providing
a stand-alone all-encompassing collision-warning solution.
However, our method is able to utilize additional information
by design, if it would be available from other system modules.

Thirdly, other previous work addresses free-space detection
(the area in front of the vehicle where it can drive) [2], [9],
[15], [16], which is a related or even the dual problem of
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Fig. 2. High-level schematic overview of our collision warning system. It
extracts flow and disparity from stereo video and generates asteroids from
stixels to analyze potential collisions.

collision warning. With our proposed method, we explicitly
add motion estimation, motion prediction and timing into the
system and analyze the obstacle part of the scene instead of
the ground part. This extends the analysis to dynamic data
instead of using only static data.

Related to that, systems in literature typically use geometry-
oriented state spaces, for instance by storing locations in occu-
pancy grids, and then derive motion as a secondary signal [25],
[26]. In contrast, our design of the state space directly stores
the relevant information, namely time-to-collision and angle-
of-impact. This is in line with our goal of designing a collision-
warning system. This will be explained in more detail in the
next section.

An earlier version of this system has been presented at
a high level in [27]. This current work provides two main
extensions. First, we present the full algorithmic details of
all processing blocks, several of which have been updated
and improved. Second, we provide an extended experimental
analysis on more data, illustrating the practical applicability of
the design. More specifically, the previous version generated,
at best, minimally 12 false warnings on KITTI data, whereas
the current system correctly generates no false warnings on
the same set and performs reliably on newly recorded real-
world data with true potential collisions. Even though this is
not an automotive-grade industrial validation, it shows both
theoretical and practical feasibility of the proposed system.

Summarizing, we focus our design on an urban setting
with medium driving speeds, with nearby traffic and obstacles.
Furthermore, we do not limit ourselves to specific classes of
objects or types of scenarios and aim at generic collision cases
and broad usage. To further generalize, we avoid relying on
semantic information on traffic layout or participant inten-
tions and restrict ourselves in this work to affordable sensor
hardware without V2V or V2I communication infrastructure.
Our state space is designed to directly model the quantity of
interest, namely angle and time of impact.

III. PROPOSED METHOD

A. System Architecture

This subsection explains the key concepts and design
choices that are underlying the high-level system architecture.
First of all, a main challenge when working with stereo

disparity data is that it tends to be noisy in general, and
missing or erroneous on low-texture image regions, such
as surfaces of smooth road or shiny cars specifically. The
stixel representation addresses some of these aspects, but at
the cost of spatial quantization, due to the limited disparity
resolution and fixed horizontal grid. This, in turn, conflicts
with smooth, fine-grained tracking of obstacles over time. A
typical approach, given these kinds of challenges, is to employ
a probabilistic processing pipeline. This facilitates maintaining
any uncertain information in the system for as long as possible.

Motion particle sampling in time and direction is the first
probabilistic aspect. We propose a probabilistic method that
is specifically designed to capture typical noise in our stixel-
based approach. It revolves around particle sampling to model
the probability density function of obstacle motion. In short,
it consists of the following steps. First, in the process of
estimating the velocity of a stixel, the corresponding uncer-
tainty is modeled as well. Second, we sample moving particles,
which we call asteroids, from that velocity model to propagate
its uncertainty into the collision-warning process. The model
captures uncertainty both in speed and in direction. If both
are measured with a high confidence, this will generate a very
dense ball of asteroids, traversing through space. However, a
stixel with a confident direction but with an uncertain speed
will generate a laser-beam like stripe of asteroids: they might
hit the car all at the same point, but will arrive in a time
interval. Alternatively, a stixel with a confident speed but
with an uncertain direction will generate a set of asteroids
in a wave-front, potentially hitting the car from different
directions at similar times. When both direction and speed
are uncertain, a dispersed cloud of asteroids can be expected.
More details on this approach are provided in Section III-F.
Concluding, this modeling fluently combines accurate and
uncertain measurements of noisy, dynamic data, so that it can
be analyzed further in the processing pipeline.

Representation of collision data is the second key design
choice for the following stages. Since analyzing and predicting
dynamic processes in general benefit from filtering over time,
we propose to utilize a Bayesian histogram filter. A histogram
offers an efficient yet flexible representation. It can represent
multi-modal distributions directly without enforcing high-level
assumptions on the modeled data, which suits our aim of
providing class-agnostic collision warnings.

Our Bayesian histogram filter models a state space that con-
tains the probability of a collision with the ego-vehicle from
a certain angle at a certain time-to-collision. Naturally, the
Bayesian filter encompasses a prediction and a measurement-
update phase which are both repeated at each time step. Ad-
ditionally, we have a Collision Analysis module that interprets
the state and generates warnings accordingly. Figure 2 portrays
the whole system. The state space and the three high-level
processing blocks are described in the following subsections.

B. State space

Since the goal of our system is to provide collision warn-
ings, we introduce a state-space design that is directly suited
to address such warning information. To this end, we define



4

s.o.i. s.o.i.

s.o.i.

s.o.i.

s.o.i.Z
X

Y

Fig. 3. Schematic visualization of the sides of impact (s.o.i.) around the
ego-vehicle with the employed coordinate system (left) and the state space
with discretized angle-of-impact, time-to-collision and p(col, ttc, aoi) versus
p(¬col, ttc, aoi) for a single side of impact (right). Our evaluation is focused
on the area highlighted in red for the front side of the ego-vehicle.

a three-dimensional state space, the axes of which are time-
to-collision (ttc), angle-of-impact (aoi) and collision (col).
Figure 3 shows a schematic visualization.

The system monitors such a state space for the five sides-of-
impact (s.o.i.) of the vehicle, as shown in Figure 3. We focus
on the frontal view in this work, since that is within the field
of view of the sensor setup. We discretize the time axis with
steps of half the sample time of the input data stream (this
equals 0.05 seconds) to a maximum of 5 seconds, and split
the angle-of-impact uniformly in five non-overlapping ranges
of 36o each. To obtain a complete joint probability distribution,
we calculate the belief in no collision p(¬col, ttc, aoi) and the
collision belief p(col, ttc, aoi) for each angle and time pair.

C. Bayesian filter: prediction

The prediction step of the Bayesian histogram filter in our
system is straightforward due to the design of the state space:
the entire space can be shifted over the amount of bins along
the time-to-collision axis, corresponding with the sampling
rate of the camera. Additionally, we apply a normalized box-
averaging filter with the same aperture as the shift. This
introduces a dispersion of the belief to reflect the uncertainty
in the prediction step, i.e. the process noise.

D. Bayesian filter: measurement update

The principal stage of our histogram filter is the measure-
ment update and consists of several steps, depicted in Figure 4.
This figure presents a more detailed view of the top-left region
of Figure 2. The aim is to convert the stereo video data at
the input via stixel and asteroid processing into a likelihood
p(measurement|col, aoi, ttc). First, the stereo image pair and
the previous left camera image are used to estimate disparity
and flow. The disparity is processed with the Stixel World
algorithm to build fronto-parallel rectangular superpixels. Our
main contribution is in the introduction of the following three
processing blocks, depicted in yellow, which are discussed in
the next subsections.

E. Measurement update: stixel tracking

The Stixel Tracking block first extracts the median 2D
optical flow for each stixel. Next, it translates this to 3D-world
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Fig. 4. Schematic overview of the measurement update stage, generating the
data likelihood for the Bayesian filter of our collision-warning system. Note
that this a more detailed view of the top-left block of Figure 2.

motion by trying to match each stixel to the corresponding
stixel of the previous set. This matching process first moves a
current stixel to its previous image position, using its optical
flow as pixel translation. Then, it analyzes the overlapping stix-
els of the previous set at that location. The stixel is disregarded
if less then 75% of its moved area falls within the image, or
if less than 50% has overlap with previous obstacle stixels.
The overlap analysis is conceptually illustrated in Figure 6 and
further explained below. If there is only one overlapping stixel,
this is considered the match. If there are multiple overlapping
stixels, these candidates are analyzed in a small selection
process. First, candidates that have an overlap ratio of less
then 1/(Noa + 1) are disregarded, where Noa is the number
of candidates. If this still leaves multiple candidates, the stixel
is matched to the candidate with the highest Bhattacharyya
coefficient, comparing the stixel texture-wise via a normalized
one-dimensional color histograms (10 bins per channel). If no
such candidate exists, no match is made. Each resulting match
is assigned a corresponding confidence from this overlap
analysis, coa, which is defined as follows:

coa(s) =

{
area(scur) ∩ area(smatch)

area(scur)
, if Noa = 1;

1− (dmax
oa − dmin

oa )/dmax
oa , if Noa > 1;

(1)

where area(s) is a stixel area counted in pixels, and dmax
oa

and dmin
oa denote the largest and the smallest disparity value

of the candidate stixels, respectively. Using this normalized
disparity range as a confidence metric in the case of multiple
candidates, ensures that coa is not too conservative, especially
if there is over-segmentation in the previous set of stixels.
More specifically, if a stixel overlaps with multiple previous
stixels that all have a similar disparity value, this should not
lead to a low confidence in the previous stixel position.

After the matching process, both stixels that could not be
matched and stixels that are clear outliers are removed, to
avoid cluttering the subsequent process, while still facilitating
a high inclusion of measurements. The tracked stixel should
have a confidence of more than 0.5; be within relevant range
of the ego-vehicle (at most 30 m to the left or right, 2.5 m
up or down; up to 60 m in front) and should have a relative
speed below 150 km/h, considering that the maximum allowed
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Fig. 5. Left: our processing visualized in a top-down view with the ego-vehicle at the center left (moving to the right), the camera field-of-view in dark
orange; five colored sides-of-impact and grid lines at every 10 m. Furthermore, the figure shows stixel tracks, sampled asteroid clouds and detected colliding
asteroids (in bright red). Right: corresponding camera image with the collision warning overlay.

Fig. 6. Conceptual illustration of the stixel tracking process by overlap
analysis: move a stixel according to its image flow (top, black striped) and
analyze the overlapping stixels of the previous set (top, dotted light blue); this
leads to a match with a certain confidence (bottom middle, green/yellow), or
no match at all (red, right).

absolute speed is 50 km/h. The colored tails of the stixels in
Figure 5 illustrate the result of the tracking process.

F. Measurement update: asteroid sampling

The tracked stixels are supplied to the subsequent Asteroid
Sampling block, which generates so-called asteroids for each
stixel. An asteroid is a particle with a trajectory sampled from
two one-dimensional Gaussian distributions, one for each of
the x- and z-velocities, so that

vx ∼ Nx(vx, σ
2
vx) and vz ∼ Nz(vz, σ2

vz ). (2)

We choose to exclude the y-dimension at this stage. This
is in agreement with the design of the state space, which
does not differentiate between vertical angles of impact, and
the fact that the stixel tracking step already removes stixels
that are situated too high or too low. To compensate for this
simplification, we assume that the ego-vehicle’s height spans
this entire vertical range: nothing can pass over or under.
This is over-cautious, but simplifies the estimation to a two-
dimensional problem.

The average velocity in each axis is calculated from the Ntrk
previous positions in the stixel track, hence (analogous for z):

vx = 1
Tsample·Ntrk

Ntrk−1∑
k=0

xt−k − xt−k−1, (3)

The variances of distributions in Equation (2) are derived by
extending the standard uncertainty propagation in disparity

estimation using a camera pinhole model with the stixel
estimation and our matching process. First of all, the error
propagation for the velocity estimate, using standard probabil-
ity theory calculation rules [28], results in

σ2
vx(s) =

σ2
xt

+ σ2
xt−1

T 2
sample

, (4)

and a similar propagation for z. Second, the stixel-position
variances can be defined from applying two camera pinhole
models. These cameras have a stereo camera baseline b, the u-
coordinate of the left-camera’s principal point u0 and left cam-
era’s focal length fu. The obtained disparity estimation process
comes with uncertainty σ2

disp, which is fixed at 0.5 pixels. This
modeling leads to the following equations:

σ2
xt

(s) =
σ2
disp

h
·
(
b · (uc,t − u0)

d2
t

)2

,

σ2
xt−1

(s) =
σ2
disp

coa · h
·
(
b · (uc,t−1 − u0)

d2
t−1

)2

,

σ2
zt(s) =

σ2
disp

h
·
(
b · fu
d2
t

)2

,

σ2
zt−1

(s) =
σ2
disp

coa · h
·
(
b · fu
d2
t−1

)2

,

where the variables from the stixel under analysis h, uc, d
and coa represent height, central u-coordinate, disparity, and
overlap-analysis confidence, respectively. Intuitively, stixels
that have a larger height also have a more certain x- and z-
position, since each row of the stixel can be considered an
additional measurement. Additionally, a sub-optimal overlap
confidence (coa < 1) will increase the uncertainty in the
estimate of the previous position.

Third, the amount of asteroids that should be generated for
each stixel depends on several aspects, which are included in
the following equation:

Nast(s) = A(s) · ρast · cfit(s) · cσ2
d
(s). (5)

The core value in this equation is A(s), which is the stixel
surface in m2, calculated by translating all four stixel u,v,d
corner-points to 3D world coordinates. This surface is multi-
plied with the asteroid density (ρast), a system parameter, to
come to an initial number of asteroids. However, the equation
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also incorporates two confidence values, that both can reduce
the number of generated asteroids. The first one, cfit(s), is
adapted from [29] and defined as follows:

cfit(s) = 1/(1 + exp (eobstacle(s)− eground(s))), (6)

where the values eobstacle and eground model energies, given by

eobstacle(s) = 1
h

∑
v∈vc±h/2

|dv − d|, (7)

eground(s) = 1
h

∑
v∈vc±h/2

|dv −∆dg · (vc − v)− d|, (8)

with stixel values h (height), vc (center row) and d (disparity).
Additionally, these energies are summed over the rows v
spanned by the stixel, and use dv as the disparity data in the
stixel area at row v and ∆dg as the expected slope of disparity
data representing flat ground. This slope can be calculated
from the camera setup using ∆dg = b/hcam, where hcam is the
height of the camera above the ground surface.

The confidence cfit(s) expresses how well the stixel model
fits the raw disparity it covers, knowing that the optimization
process explores two options (ground or obstacle). It compares
fitting either a fronto-parallel surface or a sloped surface to
the condensed single disparity column in the stixel. The other
confidence, cσ2

d
(s), is the normalized inverted variance of the

disparity within the stixel region. This is more generic than
the previous one, since it also considers the fact that a stixel
spans multiple columns. Both these confidence values aim to
decrease the chance of generating false asteroids from stixels
in noisy disparity data, by reducing the generated amount.

The top-down view in Figure 5 shows the sampled asteroid
clouds as colored blobs at the end of stixel tracks. The asteroid
clouds from the trees (on the right of the ego-vehicle) are
larger, illustrating more uncertainty in those measurements.

G. Measurement update: asteroid propagation

The third block, Asteroid Propagation, takes the cloud of
asteroids, propagates them along their generated trajectory and
monitors which ones are going to impact a safety bubble
around the ego-vehicle and the corresponding time to impact.

The propagation process relies on a constant velocity model,
no advanced dynamic models are applied at the current stage.
The constant velocity model is a reasonable choice given the
goal of offering a generic, class-agnostic analysis. Naturally,
this constraint will limit the time horizon where our predictions
are reliable. The goal is to explore these boundaries and
identify the strengths and weaknesses of the stixel-based ap-
proach, rather than providing a stand-alone all-encompassing
collision-warning solution. However, note that our method is
able to utilize additional information by design, if it would be
available from other system modules.

Performing the collision assessment based on a linear tra-
jectory extrapolation can be solved efficiently as a standard
geometric line-segment intersection problem, as presented
in [30]. We formulate both the trajectory of the asteroid and
the side-of-impact lines with an origin point (αo and soio) and
a direction vector (αv and soiv), and find τ and ζ such that

αo + τ · αv = soio + ζ · soiv. (9)

By using this representation, τ directly provides the time to
an impact, and ζ indicates the location of the impact (as the
distance from soio). Therefore, an asteroid collides with the
side-of-impact if and only if

(0 < ζ < |soi|) ∧ (0 < τ <∞), (10)

where |soi| represents the length of the side-of-impact.
For the truck at the left of the scene in Figure 5, the asteroids

are clearly projected in front of the object (marked in bright
red) from analyzing the corresponding stixels tracks.

H. Measurement update: from histogram to distribution

The results of asteroid propagation are represented in a
2D histogram, matching the configuration of the state space.
Each bin contains the amount of colliding asteroids mast for
its corresponding angle-of-impact and time-to-collision. This
histogram is then translated into the likelihood with a linear
model that depends on the asteroid density parameter ρast by

p(mast|col, aoi, ttc) = 2/ρast ·mast/ρast, (11)
p(mast|¬col, aoi, ttc) = 2/ρast · (1−mast/ρast). (12)

When mast ≥ ρast, we enforce saturation by setting
p(mast|col, aoi, ttc) = 2/ρast and p(mast|¬col, aoi, ttc) = 0.
This means that a fully confident surface of 1 m2 will generate
enough asteroids to saturate a histogram bin, independent
of the density parameter. Next, the likelihood is fed into
the Bayesian filter-update stage. Additionally, the collision
probabilities are further processed in the Collision Analysis
block, described below.

I. Collision analysis on the state space

The collision analysis block (see Figure 2) processes the
state and generates warnings if necessary. This module com-
pletes the system pipeline and facilitates assessing the relia-
bility of the analysis in a tangible way.

First of all, this block extracts a collision probability for
each state cell from the joint probability, by marginalizing
over the collision axis, so it calculates p(col|ttc, aoi):

p(col|ttc, aoi) =
p(col, ttc, aoi)

p(col, ttc, aoi) + p(¬col, ttc, aoi)
. (13)

Consecutively, it adds robustness by employing a CFAR al-
gorithm, which performs peak detection and tracking in the
probability distribution, as discussed in the following.

1) CFAR: peak detection: The next step is to identify peaks
in the probability distribution that correspond to potential
collisions. This process addresses the fact that the asteroids
in the histogram are sampled from the noisy tracked stixel
data, and hence, they travel towards the car as a dispersed
cloud. Since this shows similarities to detecting objects in
noisy RADAR data, we propose to employ a well-established
method from that field and use a Constant False-Alarm-Rate
(CFAR) detection scheme [31], [32]. CFAR is an adaptive
thresholding technique to find relevant peaks against noisy
background clutter. In theory, it provides the desired detections
at the cost of a pre-defined false-alarm rate, hence the name.
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This is based on assumptions on the distribution of background
clutter. We now briefly describe this, adapted to our context.

A CFAR detector checks if the probability in a cell is a local
maximum and higher than a certain threshold. This threshold
is derived from the neighboring cells to adapt it to the local
noise caused by outlying measurements. We treat each angle-
of-impact (aoi) as an independent sequence of measurements,
which means that our CFAR neighborhood is one dimensional,
along the time-to-collision-axis (ttc) only. Therefore, we leave
out the aoi index for brevity in the following equations.
Formally, our CFAR collision-peak detection Ccfar(ttc) is
defined with the following set of equations:

Ccfar(ttc) = . . .

(p(col|ttc) > Tcfar(ttc)) ∧
(
ttc ≡ arg max

τ∈Θcfar

p(col|τ)

)
(14)

Tcfar(ttc) =
αcfar

Ncfar

∑
τ∈Θcfar

p(col|τ), (15)

αcfar = Ncfar(p
−1/Ncfar
fa − 1), (16)

using several system parameters, where pfa is the theoretically
desired probability of false-alarm, Θcfar the definition of the
neighborhood of the ttc-bin under analysis, and Ncfar the corre-
sponding amount of training cells (bins) in that neighborhood.
The neighborhood consists of training cells, both in front and
behind the cell under test. To suppress spurious detections,
typically one or more guard cells are defined, in between the
cell under test and the training cells. Our Θcfar is configured
empirically at two front-training cells, two front-guard cells,
six after-guard cells and six after-training cells. So, Θcfar spans
17 ttc-bins but has Ncfar = 8.

2) CFAR: peak tracking: The CFAR peak detector provides
the most critical time-to-collision and does not handle any
data association between multiple potential collision blobs in
the state in itself. In our CFAR peak-tracking step, we focus
on detecting the most critical collision smoothly and leave
handling of multiple targets for future work.

Our CFAR peak tracker consists of a sliding-window buffer
with a length of seven frames for each angle-of-impact. Within
that buffer, lines are fit through every pair of collision-peak
ttcs. This again assumes a constant-velocity model, which
would lead to a linearly decreasing ttc in more recent measure-
ments. For every line, we find the number of measurements
in the buffer that are within three ttc steps of the fitted
line. If there are at least four of these inliers, the line is
considered to represent a collision event. The event with the
highest number of inliers is selected to generate a warning with
its corresponding extrapolated ttc. When multiple lines have
equal support, the one with the most urgent time-to-collision
is given priority. This sliding-window strategy suppresses
spurious detections and simultaneously, it is cautious towards
missed peaks in the first step.

Figure 5 presents an example result where the bright red
stixels on the front of the truck are stixels that cause the
generated collision warning, visible in the top-down view and
also in the overlay on the camera image.

IV. EVALUATION APPROACH

This section explains the validation of the proposed system
by addressing the selection of data sets, performance metrics
and the performed experiments. Even though the provided
evaluation cannot serve as an automotive compliant end-to-
end validation of the system, it demonstrates the feasibility of
our stixel-based collision warning system through simulated
and real-world experiments.

A. Data

Our validation process is performed on three different data
sets: two with real-world data and one with simulated data.

The simulated PreScanStereoCollision data (PSSC) is newly
made for this research with the PreScan software package [33]
and exported in KITTI format for compatibility. This simulated
data is included in our evaluation to test actual collisions and
easily evaluate different relevant scenarios. We have created
5 sequences in the PreScan environment: Straight, Figure-8,
Y-crossings-Fast, Y-crossings-Slow and Mixed. Figure 7 shows
example frames of each sequence. Sequence Straight is a
large rectangular trajectory with head-on collisions with static
objects of decreasing sizes (e.g. from truck to car, down to
kids) and an empty road with common side objects. Sequence
Figure-8 is similar, but now on a curved road, so that the
heading changes constantly. The Y-crossings sequences contain
a straight trajectory with different objects approaching on
collision course from the right at consecutive y-crossings. In
the Fast version, each participant moves at its own nominal
speed, while in the Slow one, speeds are decreased so to match
the maximum relative speed of the Straight sequence. Finally,
the Mixed sequence is a busy, fully dressed city center with
multiple traffic participant approaching from various directions
(either safe or on collision). The simulated stereo camera has
a baseline of 30 cm, a resolution of 1024 × 512 pixels and a
field of view of 46.2× 24.1 degrees.

Additionally, we evaluate our system on the KITTI-tracking
dataset. This KITTI data has no collisions and only a handful
of near-collisions, but a crucial aspect is to quantify any
false alarms on real-world data. The evaluation requires ego
motion as well as true object positions. Hence, the evaluation
is limited to the training set of KITTI-tracking. This is the only
part of the data set for which the annotated object bounding
boxes and positions are available, which can be exploited to
generate ground-truth collision warnings. We generate stixels
on the surface of object bounding boxes, and set their motion
according to the annotated motion of the object. These stixels
are then used to generate a single asteroid each, with fixed
motion that is extrapolated to produce the reference ttc labels.

On top of that, we have recorded a real-world dataset,
TUE&ACNL, at the Eindhoven University of Technology
campus (TUE), the Automotive Campus Netherlands (ACNL)
at Helmond and the roads in between. During these recordings,
the car is driven around the TUE campus in normal traffic
for 30 minutes and is also steered towards near-collision
with other traffic or static obstacles. The recordings at and
towards ACNL are partially in normal traffic and partially on
temporarily closed roads. This data has been captured under
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Fig. 7. Examples of our PreScanStereoCollision (PSSC) sequences; from left to right: Straight, Figure-8, Y-crossings and Mixed

TABLE I
EVALUATION DATA OVERVIEW

Dataset camera(1) #Pos #Neg
PSSC 30 cm; 1024 px; Frames 880 1,914

( 4.7 minutes) 46o; 10 Hz Events 40 n.a.
KITTI 54 cm; 1242 px; Frames 155 7,811

(13.3 minutes) 80o; 10 Hz Events 40 n.a.
TUE&ACNL(2) 30 cm; 480 px; Frames 23,000(3)

(63 minutes) 44o; 6 Hz Events ±100 n.a.
(1) Provided are: baseline, image width, horizontal field-of-view and
frame rate. (2) TUE&ACNL has no ground-truth annotations.
(3) Roughly 5,000 of these frames were recorded at night.

both overcast and bright sunny conditions, including several
cases of strong back light. Notably, several sequences were
recorded during nighttime. This dataset has no annotations
of true obstacle positions and motion for a full quantitative
evaluation. However, it offers a valuable qualitative insight
into the collision warnings that the system generates in real-
world conditions, since we have used a regular automotive-
grade stereo camera. Table I summarizes the properties of
the employed annotated data, regarding the duration and the
number of frames and collision events.

B. Metrics

The performance of our collision-warning system will be
quantified at two places: before and after CFAR peak tracking.
Ultimately, the goal is to design a system that handles the com-
plete events properly. Hence, it is acceptable that the system
misses a collision peak in some frames, if it still detects the
corresponding event relying on other frames. The evaluation
on a per-peak basis gives an idea on the intermediate level of
performance. It contains more samples, which increases the
reliability of the analysis, while it also provides insights into
strengths or weaknesses in the processing. This performance is
also relevant for the described case where the collision analysis
would be fused in a larger system. The performance will be
quantified by calculating the Recall, the Precision and their
harmonic mean (F1 score), both before and after peak tracking.

C. Time range

As explained in Section II, the time horizon in which
our system can reasonably operate is inherently limited by
our modeling assumptions. The most dominant limitation
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Fig. 8. Distribution of collisions over ttcs for the PSSC and KITTI data sets;
the stacked histogram shows the different PSSC sub sequences. It shows that
the KITTI recordings contains very few potential collisions, explaining the
need for the complementary simulated PSSC data.

originates from our use of a constant-velocity motion model,
which is especially uncertain in our context of operation: urban
areas with nearby traffic from any direction.

To link our evaluation to real-world conditions, we rely on
stopping-distance guidelines, as used by the NACTO [34] and
NHTSA [35]. They provide ballpark figures for feasible de-
acceleration, that are said to range from 6 m/s2 for a reasonably
skilled driver to 9.8 m/s2 for a professional driver under good
conditions. Since our system is designed for urban scenery, the
ego-vehicle speed is around 50 km/h. In that case, it would
require somewhere between 1.4-2.3 s to fully stop the ego-
vehicle, depending on driver skills and conditions. Therefore,
if the collision-detection module is integrated tightly into the
car control system (e.g. with automated emergency braking),
it should operate reliably at least up to 1.4 s. However, if the
module purely generates warnings to assist a human driver, it
should operate reliably to up to 2.3 s.

Figure 8 shows the distribution of collision events in our
data over time-to-collision. The events in our simulated data
are distributed rather homogeneously between 0.3 and 3.0 s.
The graph of the KITTI-event distribution, however, confirms
that this data was recorded during a clean drive. Namely, the
handful of short, potential collision events are never closer
than 1.5 s. Therefore, this part of the experimental validation
is focused on avoiding false warnings on the KITTI data within
the above-mentioned time ranges, while obtaining a high F1

score on the PSSC in that same time range.
As mentioned, the objective of this work is to explore

the operational boundaries and identify the strengths and
weaknesses of the stixel-based approach, rather than providing
a stand-alone all-encompassing collision-warning solution.



9

D. Experiments

The objective of the validation is already covered by the
selection of the data sets, i.e. simulated data with several
relevant scenarios and real-world data to test practical appli-
cability. To further explore the system robustness, we have
evaluated the performance over different settings of the core
system parameters, being the asteroid density, the maximum
tracking length and the parameter pfa for the CFAR module
within the Collision Analysis block. These experiments focus
on validating the system.

Additionally, we will test the influence of the quality of
the input data by selecting different algorithms or settings to
generate the disparity and flow data. For disparity, we com-
pare using the traditional, widely adopted Semi-Global Block
Matching (SGBM) algorithm [36] to using a newer, state-
of-the-art deep learning-based method, namely DispNet [37].
For flow estimation, we rely on FlowNet2 [38], also based
on deep learning. The authors of FlowNet2 have presented
several architectures and made them publicly available. The
different available versions vary highly in inference speed,
with a trade-off against pixel-level performance quality. This
can be exploited to experimentally quantify the robustness
of our data processing against degraded input flow data. In
turn, this will offer relevant insights on the trade-off between
system latency and performance quality. Since our our system
is stixel-based rather than pixel-based, we aim at being robust
to these lower-quality, yet faster versions of flow estimation.

In the design of our state space and by the structure
of the ego-vehicle’s impact bubble, the system is able to
handle collisions from all directions and at different sides
of impact. However, the evaluation will be limited to the
detection of collisions at the front of the vehicle. The cause of
this constraint is that the annotated real-world data has been
recorded with a single, forward looking stereo camera, so that
it is currently not feasible to validate this functionality.

V. RESULTS

A first indication of the results is provided in Figure 9. It
illustrates typical performance on low-quality flow and noisy
disparity, whereas our probabilistic approach is still able to
extract relevant information.

A. Quantitative evaluation on KITTI and PSSC

As a first quantitative evaluation, we present the perfor-
mance with respect to the ego-vehicle breaking times, as
discussed in Section IV-C. Figure 10 portrays the performance
of three system configurations that do not detect any false
events on the KITTI dataset for the use case of an integrated
system (no false positives with ttc <1.4 s, top graph), the use
case of a human-in-the-loop (no false positives with ttc <2.3 s,
bottom graph) and an intermediate case (no false positives with
ttc <1.8 s, middle graph). Within the subset of configurations
that comply with that constraint, we present the one with
the highest F1 on the simulated PSSC data. On PSSC, these
settings suffer from up to three false negatives, all in the Figure
8 sequence. The main cause of these misses is the curved ego-
motion, which (1) makes the potential collisions short, barely

being the minimum required for the event detection module,
and (2) does not fit the prediction step, only considering
straight motion. On top of that, one collision is with a man
lying down on the road (second picture in Figure 7), which
is so low positioned that it is barely represented with stixels.
CFAR detects a peak at ttc =0.6 s, which is too late for the
peak tracking to activate. This shows that our current system
is vulnerable concerning objects lower than around 0.4 m, and
could be better adapted to curved ego-motion.

Secondly, Figure 11 provides an analysis on how different
system parameters influence the detection performance, using
the PSSC data. Each row shows a different parameter: the
method of disparity estimation, the method of flow estimation,
the maximal length of stixel tracks, the asteroid density and
the CFAR parameter pfa. We accumulated the results of
all parameter combinations, and generated the surfaces by
averaging all sub-experiments with a specific value of the
parameter under test. The left set of graphs show the peak-
detection results, the right set those after peak tracking. Both
present the Recall, Precision and F1 scores.

Overall, the graphs show better performance at a smaller ttc.
This makes sense, since it is mostly closer to the ego-vehicle,
so the obstacle is clearer in view, and probably sufficiently
long such that it could be tracked better.

A noteworthy observation is how little the system perfor-
mance is impacted by the choice of the flow method. Using the
smallest FlowNet2 version (FN2-s) yields practically identical
performance to using the full version, although the former one
can be executed roughly 17 times faster than the latter (7 ms
on an GTX-1080 GPU), at the cost of a drop in pixel-accuracy
of the optical-flow result of up to a factor of 2 [38]. This shows
the potential in robustness of combining a superpixel strategy
with probabilistic sampling and filtering (Section III-A).

Additionally, the surfaces show that allowing for longer
stixel tracks improves the recall and hence the F1 score of
the system, both before and after CFAR peak tracking. Other
than that, there is a slight preference towards a smaller asteroid
density and a high pfa for the peak detection.

A similar analysis for the impact of system configuration
on the results on KITTI data is provided in Figure 12. Since
there are so few actual potential collisions, we only focus on
the number of false positives here, which should be preferably
low. The surface plots show that most false CFAR peaks
(before tracking) occur at a large ttc. However, no false
events occur at high ttc. This can be explained by the fact
that the measurements at large ttc are more uncertain and
tracking is not yet able to support the estimation, which
leads to inconsistent peak detections within the CFAR module.
Subsequently, the peak-tracking step filters these out, thereby
improving the system robustness.

Other important observations are that reducing either the
flow quality, or the use use of a small asteroid density, or
a large pfa value all have a slight negative impact on the
results. A striking graph is that of the maximum tracking
length: shorter tracks or long tracks are better than medium
tracks. We hypothesize that short tracks lead to noisy data that
is filtered out later more easily, while long tracks lead to more
accurate estimations that do not need to be removed.
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Fig. 9. Three typical collision warnings illustrating clean results from good (top), medium (middle) or noisy (bottom) input; from left to right: left camera
image with warning overlay, disparity data, flow data, stixels with flow vector, top-down view. Note that the ego-vehicle is cornering in the first example, so
the warning looks false but is correct.

Fig. 10. Best performance on PSSC using settings that produce no false
positives on the KITTI data set with ttc <1.4 s (top), ttc <1.75 s (middle)
and ttc <2.3 s (bottom).

B. Timing

The algorithmic contributions are implemented in C++
and tested on a desktop PC (Xeon E5-1660 0 CPU
@3.30 GHz×12; 15.6 GB). On the KITTI data, the Stixel
World algorithm takes roughly 20 ms. The bottleneck within
our proposed blocks is the Stixel Tracking module, requiring
35-45 ms at present. It is faster on the PSSC data (15-20 ms),
since the stixel segmentation is much cleaner, which indicates
that removing clutter stixels prior to the matching process
can speed up processing. Asteroid Sampling, their propagation
including the collision check, and the histogram filter need 1-
4 ms, the CFAR detection 0-1 ms. Together, this results in a
processing speed of 15-17 fps, which is sufficiently fast for
real-time operation on the 10-fps datasets.

C. Qualitative evaluation on TUE&ACNL

This section presents the qualitative results on the
TUE&ACNL data: real-world recordings of 63 minutes in
normal traffic and on closed roads, partially during the night,
with several intentional near-collisions. Figure 13 presents
four examples of typical ASTEROIDS performance on near-
collisions. The first three examples show frames that were
0.5 s apart, the snapshots of the rightmost example (with the
small pole) are 1/6 of a second apart, since it was only shortly
on a collision trajectory. Even though we cannot quantify the
estimated ttcs, the warnings generated by the system seem
natural and plausible to the driver. Moreover, there was not
a single false warning during the whole recording. Three-
quarters of the data was recorded in bright sunny weather,
causing sharp shadows, high contrast, temporal flicker, direct
sunlight and reflections, which our setup could all handle. The
rest of the data was captured during nighttime. The system was
still able to generate warnings for near-collisions in the dark,
although they typically occurred later (earliest at ttc ≈1.5 s).
In conclusion, this experiment supports our proof-of-concept
evaluation with the findings on the KITTI and PSSC datasets
and shows promising real-world applicability.

VI. CONCLUSION

This paper has presented a vision-based collision-warning
system for ADAS in intelligent vehicles. The approach is
class-agnostic as it detects general obstacles that lay on a
collision trajectory with the ego-vehicle without relying on
semantic information. This is in contrast with most current
systems, that rely on pre-trained pattern recognition and
are limited to predefined object classes or situations. Our
framework estimates disparity and flow from a stereo video
stream, extracts stixels, and samples so-called asteroids based
on an uncertainty analysis of the measurement process to
model potential collisions. This is all enclosed in a Bayesian
histogram filter around a time-to-collision versus angle-of-
impact state space. The end-to-end probabilistic approach
is specifically designed to handle the noisy disparity and
flow data, so that the system does not require an accurate
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Fig. 11. Impact analysis of system configuration on the system performance using PSSC data, split over different parameters and plotted over time-to-collision.
The color yellow represents a desired high score. Note that reducing the quality of the flow and/or disparity has little impact on the performance (top 2 rows).
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Fig. 12. Analysis of the relative impact of system configuration on per-
formance with KITTI data, split over different parameters and plotted over
time-to-collision. Because of the low actual potential collisions, we show only
false positives. Color towards red represents an undesired (relatively) high
FP count. The color ranges are stretched individually to emphasize relative
performance within each parameter; comparing results between parameters or
with and without peak tracking in an absolute sense is not the goal here.

and computationally expensive estimation of those signals.
The evaluation shows that the system correctly avoids false
warnings on the real-world KITTI dataset, detects all but one
collisions in a newly simulated dataset, and performs excellent
on our new qualitative real-world data with near-collisions,
both during daytime and nighttime conditions.
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