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Abstract
This paper explores the use of stixels in a probabilistic stereo

vision-based collision-warning system that can be part of an

ADAS for intelligent vehicles. In most current systems, collision

warnings are based on radar or on monocular vision using pat-

tern recognition (and ultra-sound for park assist). Since detect-

ing collisions is such a core functionality of intelligent vehicles,

redundancy is key. Therefore, we explore the use of stereo vi-

sion for reliable collision prediction. Our algorithm consists of a

Bayesian histogram filter that provides the probability of collision

for multiple interception regions and angles towards the vehicle.

This could additionally be fused with other sources of informa-

tion in larger systems. Our algorithm builds upon the dispar-

ity Stixel World that has been developed for efficient automotive

vision applications. Combined with image flow and uncertainty

modeling, our system samples and propagates asteroids, which

are dynamic particles that can be utilized for collision prediction.

At best, our independent system detects all 31 simulated collisions

(2 false warnings), while this setting generates 12 false warnings

on the real-world data.

Introduction
This paper presents a stereo vision-based collision warning

system for assisted or automated driving. For various years, ob-

stacle detection and its counter problem, i.e. drivable or freespace

detection, have been an active research direction in the field of

intelligent vehicles [1, 2], together with early extensions on con-

trol [3, 4]. The objective of this research is to reduce traffic ac-

cidents, predominantly by avoiding or mitigating collisions. This

requires detecting potential collisions accurately and timely, irre-

spective of whether the avoidance will be executed by a human

driver or automatically by a follow-up system.

The most advanced vision-based collision avoidance systems

currently presented in literature rely on a combination of sensor

modalities, like LIDAR, V2I or V2V communication, RADAR,

GNSS+IMU, cameras and HD maps [5, 6]. The benefit of such

an approach is that it facilitates redundancy over modalities in the

perception system of a car. This is an important vehicle safety

aspect for real-world applicability [6], for example, to reduce the

effect of sensor malfunctioning or to remove blind spots in the

perception of the surroundings.

To this end, we propose to develop a generic, independent,

forward collision warning system using a stereo camera. Stereo

cameras are increasingly employed in cars with ADAS, mainly

for high-level semantic reasoning and scene geometry estimation.

Therefore, our research explores how to exploit stereo vision fur-

ther. During the past years, the so-called Stixel World algorithm

has gained momentum for efficient automotive vision analysis.
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Figure 1. Schematic overview of our collision warning system. It extracts

flow and disparity from stereo video and generates asteroids from stixels to

analyse potential collisions.

Originally, it addressed representing scene geometry efficiently

from disparity data [7]. Taking a data view, the disparity analysis

has been extended with color data [8] and semantic class proba-

bilities [9]. In a functional view, it has been extended with e.g.

dynamics [10] and object recognition [11]. In our case, we want

to exploit stixels in a collision warning system. For this purpose,

we provide a fully probabilistic method to facilitate fusing it into

a larger system, for instance, to complement short-range radars

that typically are employed for this task.

The remainder of this paper is organized as follows. Sec-

tion ‘Related Work’ provides a more specific overview of related

work. Section ‘Method’ presents our proposed method, followed

by the description of our evaluation strategy and their results in

Sections ‘Validation’ and ‘Results’. Section ‘Conclusion’ con-

cludes the overall work.

Related Work
Our research aims at exploiting stixels to generate reliable

collision warnings in an urban setting, where many and multiple

types of traffic participants (cars, pedestrians, cyclists, buses, etc.)

can pass close by to the ego-vehicle (e.g. the ADAS-equiped car).

Stixels are vertical superpixels with fixed pixel width, which

are produced by analyzing disparity data with the Stixel World

algorithm [12]. This algorithm processes the data in a column-

based way and divides the scene into either ground or fronto-

parallel, rectangular obstacle patches that are assigned a single

disparity value. This forms an efficient representation of the scene

geometry and has a proven value for different subdomains. The

disaprity Stixel World has been fused with deep neural nets for se-

mantic scene understanding [9], stixels have also been clustered

to detect and recognize objects [11], and the Stixel World analy-



sis can provide a supervisory function in an online training setup

for free-space segmentation [13, 14]. Given this broad promising

range of applications, we want to extend it even further and ex-

plore how to extract relevant collision warning information, start-

ing from the bare disparity stixels. We aim at designing a generic

method, so that it can always benefit from the more advanced ver-

sions of the Stixel World proposals under development, e.g. that

realize object clustering or find semantic labels.

In related work on collision warning systems, we have ob-

served several limitations that we mitigate or avoid altogether.

First of all, most current systems are limited to highway scenar-

ios [15]. Although those can operate at higher vehicle speeds, the

systems will not be able to deal with street crossings, non-vehicle

traffic or oncoming traffic, which is not a fundamental limitation

in our method.

Second, most collision warnings systems rely on vision with

trained pattern recognition. For instance, a MobilEye system will

only recognize cars, trucks, motorcycles, cyclists and pedestrians,

with the additional limitation to fully-visible rear-ends for vehicle

detection [16]. Similarly, the system of Cherng et al. classifies sit-

uations into five pre-defined dangerous motions that are limited to

the ego-direction (such as cut-ins) and can handle only regularly

sized cars, just one of which may be in view in a scenario [17].

Both these approaches rule out handling crossing, oncoming, and

passing traffic, in contrast to our algorithm.

The mono-camera based system of Ess et al. deploys sev-

eral class-specific detectors, for instance for cars and pedestrians.

Subsequently, they rely on class specific motion models to pre-

dict object trajectories for enhanced accuracy [18]. In contrast,

our system can handle any tangible object, without knowing it’s

type. That makes the system more robust and widely applicable,

since it is not limited to a set of objects for which it was trained.

Moreover, we model objects in a very generic way and aim at

a procedure that also does not rely on high-level knowledge such

as infrastructure layout [6] or intention estimation [19] in itself.

Additionally, we do not employ any advanced dynamic models

and instead rely on simple constant-velocity kinematics. These

constraints will inherently limit the time horizon within which our

predictions are reliable. Our goal is to explore these boundaries

and identify the strengths and weaknesses of the stixel-based ap-

proach, rather than providing a stand-alone all-encompassing col-

lision warning solution. However, note that our method is able to

utilize additional information by design, if it would be available

from other system modules.

Thirdly, other previous work addresses free-space detection

(the area in front of the vehicle where it can drive) [2, 8, 13, 14],

which is a related or even the dual problem of collision warning.

With our proposed method, we explicitly add motion estimation,

motion prediction and timing into the system and analyze the ob-

stacle part of the scene instead of the ground part. This extends

the analysis to dynamic data instead of using only static data.

Method
The high-level structure of our system consists of a Bayesian

histogram filter. It models a state space that contains the belief in

a collision with the ego-vehicle from a certain angle at a certain

time-to-collision. Naturally, the Bayesian filter encompasses a

prediction and a measurement update phase that are repeated at

each time step. Additionally, we have a Collision Analysis mod-
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Figure 2. Schematic visualization of the state space with dis-

cretizations over angle-of-impact, time-to-collision and p(col, ttc,aoi) versus

p(¬col, ttc,aoi) for a single side of impact. We focus our evaluation on the

area highlighted in red for the front side of the ego-vehicle.

ule that interprets the state and generates warnings accordingly.

Figure 1 portrays the whole system. The state space and the three

processing blocks are described in the following subsections.

State Space

We define a three-dimensional state space, the axis of which

are time-to-collision (ttc), angle-of-impact (aoi) and collision be-

lief (col). Figure 2 shows a schematic visualization. The sys-

tem can monitor a state space like this for every desired side of

the vehicle (as long as it is within the field of view of the sensor

setup), although we focus on the frontal view in this work. We

discretize the time axis with steps of half the sample time of the

input data stream (this equals 0.05 seconds), and split the angle-

of-impact uniformly in five non-overlapping ranges of 36◦ each.

To have a complete joint probabilistic distribution, we calculate

both the belief in no collision p(¬col, ttc,aoi) and the collision

belief p(col, ttc,aoi) for each angle and time pair.

Prediction

The prediction step of the Bayesian histogram filter in our

system is straightforward due to the design of the state space: the

entire space can be shifted the amount of bins over the time-to-

collision axis that corresponds to the sampling rate of the camera.

Additionally, we apply a box-averaging filter with the same size

as the shift. This introduces a dispersion of the belief to reflect the

uncertainty in the prediction step, i.e. the process noise.

Measurement Update

The principal stage of our histogram filter is the mea-

surement update and consists of several steps, depicted in

Figure 3. The aim is to convert the stereo video data at

the input via stixel and asteroid processing into a probability

p(measurement|col,aoi, ttc). First, the stereo image pair and the

previous left camera image are used to estimate disparity and

flow. The disparity is processed with the Stixel World algorithm

to build fronto-parallel rectangular superpixels. Our main con-

tribution is in the introduction of the following three processing

blocks (which are colored yellow in the diagram).
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Figure 3. Schematic overview of the measurement update stage of our

collision warning system.

Stixel Tracking
The Stixel Tracking block first extracts the 2D image flow for

each stixel. Next, it translates this to 3D-world motion by trying to

match each stixel to the corresponding stixel of the previous set.

In this step we also remove both stixels that cannot be matched

and clear outliers, to avoid cluttering the subsequent process. The

tracked stixel should have a confidence probability of more than

0.5; be within relevant range of the ego-vehicle (at most 30 m

to the left or right, 2.5 m up or down; up to 60 m in front) and

should have a relative speed below 150 km/h. The colored tails of

the stixels in Figure 4 illustrate the result of the tracking process.

Asteroid Sampling
The tracked stixels are supplied to the subsequent Aster-

oid Sampling block, which generates so-called asteroids for each

stixel. An asteroid is a particle with a trajectory sampled from

three one-dimensional Gaussian distributions, one for each of the

x-, y- and z-velocities. These distributions follow the standard un-

certainty propagation in disparity estimation and a camera pinhole

model. Additionally, we incorporate the stixel estimation and our

matching process into the error propagation process. More specif-

ically, a taller stixel has a more certain position estimate, whereas

a low-confident stixel match will lead to a less certain previous

stixel position. Similarly, a longer stixel track leads to a more cer-

tain asteroid velocity; and stixels with a low confidence or a high

internal disparity variation will generate less asteroids. Moreover,

the amount of asteroids that is sampled for a stixel is a function of

the metric stixel surface and the asteroid density (a system param-

eter). The BEV in Figure 4 shows the sampled asteroid clouds as

colored blobs at the end of stixel tracks. The asteroid clouds from

the trees (on the right of the ego-vehicle) are larger, showing more

uncertainty in those measurements.

Asteroid Propagation
The third block, Asteroid Propagation, takes the cloud of as-

teroids, propagates them linearly along their generated trajectory

(i.e., a constant velocity model) and monitors which ones are go-

ing to impact a safety bubble around the ego-vehicle and the time

to impact. This can be solved efficiently as a standard geometric

line-segment intersection problem. For the truck at the left of the

scene in Figure 4, the asteroids are clearly projected in front of

the object (marked in bright red) from analyzing the correspond-

Figure 4. Top: our processing visualized in a Bird’s Eye View (BEV) with

the ego-vehicle at the center left (moving to the right), stixel tracks, sampled

asteroid clouds and detected collisions (in bright red) and grid lines at every

10 m; the dark red lines represent the aoi for the current warning, not the FOV.

Bottom: corresponding camera image with the collision warning overlay.

ing stixels tracks.

The results of asteroid propagation are represented in a 2D

histogram, of which the bins match the configuration of the state

space. This histogram is then translated into a joint probability

distribution with a linear model, as illustrated in Figure 5. The

number of asteroids at which the rule saturates is set equal to the

the asteroid density. This means that a fully confident surface

of 1 m2 will generate enough asteroids to saturize a histogram

bin, independent of the density parameter. After this translation,

the joined probability distribution is fed into the Bayesian filter-

update stage. Additionally, the collision probabilities are further

processed in the Collision Analysis block, described below.

Collision Analysis
This stage analyzes the state and generates warnings if nec-

essary. It adds robustness by filtering at two levels: at the time-to-

collision estimation and at the collisions-over-frame analysis.

First of all, this block extracts a collision probability for each

state cell from the joint probability, by marginalizing over the col-

lision axis, so it calculates p(col|ttc,aoi).
Secondly, it smoothens pcol over the time axis by convolving

it with a Hanning window of length 11 in a single impact direction

and then executes a peak detector to suppress false peaks1. This

1We rely on the peak detection method as presented in
http://nbviewer.ipython.org/github/demotu/BMC/blob/
master/notebooks/DetectPeaks.ipynb, using default parameters.
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Figure 5. Illustration of translating the histogram data into the joint proba-

bility distribution.

step addresses the fact that the asteroids in the histogram are sam-

pled, and hence, they travel towards the car as a dispersed cloud.

The peak detector tries to find the center of that cloud, which is

assumed to correspond to the true time-to-collision.

This analysis results in a collision detection for each frame

individually. In reality, collisions do not occur just in a sin-

gle frame, they are events spanning multiple frames. Therefore,

thirdly, we consider these per-frame detections as a noisy time

series and filter those to generate the final warnings on potential

collision events. We enforce the detections within the event to

be consistent by thresholding the frame-to-frame differences in

detected ttc, and then employ a simple moving average filter. Ef-

fectively, the system generates a warning if and only if there are

3 frames with a consistently detected collision within 6 consecu-

tive frames. This suppresses spurious detections and simultane-

ously is cautious towards missed detections at the frame level.

Figure 4 presents an example result where the bright red stix-

els on the front of the truck are stixels that cause the generated

collision warning, visible in the bird’s eye view and also in the

overlay on the camera image.

Validation
This section explains the validation of the proposed system

by addressing the selection of data sets, performance metrics and

the performed experiments.

Data
We use two different data sets in our validation process: one

with real world data and one with simulated data.

The simulated PreScanStereoCollision data (PSSC) is newly

made for this research with the PreScan software package and ex-

ported in KITTI format for compatibility. We have included this

simulated data into our evaluation, so that we can test actual col-

lisions and easily evaluate different relevant scenarios. We have

created 4 sequences in the PreScan environment: Straight, Figure-

8, Y-crossings and Mixed. Sequence Straight is a large rectangular

trajectory with head-on collisions with static objects of decreasing

sizes (e.g. from truck to car to motorcycle down to regular pedes-

trian to kid). Sequence Figure-8 contains similar obstacles but

now on a curved road, so that the ego-vehicle is constantly chang-

ing its heading. The Y-crossings sequence contains a straight tra-

jectory for the ego-vehicle, with different objects approaching on

collision course from the right at consecutive y-crossings. Finally,

the Mixed sequence is a busy, fully dressed city center. It contains

all kinds of vehicles and pedestrians that are either on a safe or

on a collision course, straight and from different angles. Figure 6

shows example frames of each subset. The simulated stereo cam-

era has a baseline of 30 cm, a resolution of 1024×512 pixels and

a field of view of 46.2×24.1 degrees.

Additionally, we evaluate our system on the KITTI-tracking

dataset. This KITTI data has no collisions and only a handful of

near collisions, but a crucial aspect is to quantify the false alarm

rate on real-world data. We use the training subset, to exploit

the annotated object bounding boxes and positions to generate

ground-truth collision warnings.

We set the relevant ttc range for our system to operate in as

ttc ∈ [0.3,2.0] seconds. Some frames in the datasets have poten-

tial collisions outside of that range; those frames are ignored in

the analysis. Table 1 depicts the properties of the employed data.

Table 1. Dataset overview
Dataset #Pos #Neg #Ign

PSSC Frames 491 1,747 227

( 4.1 minutes) Events 31 n.a. n.a.

KITTI Frames 22 7,868 76

(13.3 minutes) Events 2 n.a. n.a.

Metrics
We quantify the performance of our collision warning sys-

tem at two levels: at the lower level of frames and at the higher

level of collision events that span multiple frames. Ultimately, the

goal is to design a system that handles the events properly. Conse-

quently, it is acceptable that the system misses a collision in some

frames if it still detects the corresponding event relying on other

frames. We show the evaluation on a frame basis to give an idea

on the intermediate, raw level of performance. The frame level

contains more samples by definition, which increases the reliabil-

ity of the analysis, while it also provides insights into strengths or

weaknesses in the pipeline.

We measure True Positive Rate (TPR) and False Alarm Rate

(FAR) on a per-frame basis. It is conceptually misleading to prop-

erly define a negative event. Therefore we do not measure the

number of true negatives at the level of events. Instead, we cal-

culate the harmonic mean of the TPR and Precision of collision

events to provide a balanced view of the system performance.

Experiments
The core of the validation goal is already covered by the se-

lection of the data sets, i.e. simulated data with several relevant

scenarios and real-world data to test practical applicability. To

further explore the robustness of the system, we have evaluated

the performance over different settings of the core system param-

eters, being the asteroid density, the maximum tracking length and

the threshold on pcol within the Collision Analysis block.

With these experiments, the focus of this validation is on the

full system itself, and not on the algorithms that generate the dis-

parity and flow input data. We have decided to keep those param-

eters constant for each data set. Specifically, we use SGBM [20]

and FlowNet2 [22] for PreScan, and DispNet [21] and FlowNet2



Figure 6. Examples of our PreScanStereoCollision data. From left to right: subsequences Straight, Figure-8, Y-crossings and Mixed

(both tuned on KITTI) [22] for the KITTI data sets. Additionally,

we limit the evaluation to the detection of collisions at the front

of the vehicle, since the data has been recorded with a single, for-

ward looking stereo camera.

Results
The key quantitative results of the frame-based analysis on

the simulated PSSC data set are shown in Figure 7. Subfigure (a)

shows the results on all subsequences combined. The system per-

forms best with an asteroid density of 75, a maximum stixel track-

ing length of 10 frames and a threshold on pcol of 0.035, leading

to an F1 score of 0.79. Subfigures (b)-(e) present the results on

the individual subsets. The sequence Figure-8 is clearly the most

difficult, indicating that the system under performs during non-

straight ego motion. It is noteworthy that the tracking parameter

has the most impact in that sequence, which may indicate the root

of the problem in the current pipeline.

The corresponding results on the KITTI data set are shown

in Figure 8. Due to the limited amount of positive samples, this

graph just shows the false alarms as a function of the probability

threshold. The system has a frame-based FAR of 0.45 on KITTI

data at the optimal settings from the PSSC analysis.

The results of the event-based analysis are presented in Fig-

ure 9 and Table 2. The graphs in Figure 9 exhibit that the event-

based analysis performs optimally for threshold on pcol of around

0.05-0.15, which is higher than the optimal thresholds of the

frame-based analysis of around 0.035. This indicates that the sys-

tem can indeed cope with missing detections in some frames and

still recognize the collision event as a whole.

The exact numbers of true, false and missed collision event

detections on PSSC and KITTI data are shown in Table 2. First

of all, the missed detections in PSSC data are all in the Figure-8

sequence. The collision with a person laying down on the ground

is almost always missed, indicating a low sensitivity to small ob-

stacles. From Table 2, the optimal system settings are using an

asteroid density of 10, tracking stixels for maximally 5 frames

and thresholding with 0.095. We hypothesize that the tracking

and prediction steps are currently not sufficiently robust to curved

ego-vehicle motion. This could be resolved by employing a more

advanced dynamic model for the ego-vehicle, which incorporates

the steering angle.

Note that we have used PSSC data to find optimal settings

and applied those to KITTI data. For completeness, we also an-

alyzed the KITTI data itself. This analysis revealed that the op-

timal settings for KITTI and PSSC only differ in the value for

the threshold. This setting is slightly higher for KITTI, which is

appropriate due to the presence of more clutter in that data. How-

ever, both the optimal asteroid density and the optimal tracking

length turned out to be identical, which illustrates that the system

is robust to different environments with respect to those settings.
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Figure 7. Frame-based quantitative results of complete set (a) and split

over different PreScan sequences (b-e), showing that the system has trouble

with non-straight ego-vehicle motion (e).

Figure 8. Frame-based quantitative results on all KITTI-tracking sequences

combined, using the optimal settings from the PSSC analysis. Since KITTI

has very few positive samples, only FAR is shown here.

Timing
Our three proposed processing blocks run on CPU and to-

gether take typically 10-20ms on a desktop PC (Intel Xeon CPU

E5-1660 0 @3.30GHz12; 15.6GiB).

Conclusion
This work has presented a stereo vision-based collision

warning system that is suited for real-time execution in a car. The

system is structured as a Bayesian histogram filter and provides

fully probabilistic results, which can be supplied to other ADAS

modules for data fusion or processed independently. We have also

presented an example of the latter and evaluated it on both simu-

lated and real-world data. At best, our independent system detects

all 31 simulated collisions with 2 false warnings, while this setting
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Figure 9. Event-based quantitative results on PSSC data.

Table 2. Event-based collision-warning results

Settings PSSC data KITTI data

Rho Track Thr TP FP FN TP FP FN

10 5 0.095 31 2 0 1 12 1

50 5 0.055 29 0 2 2 20 0

75 5 0.045 30 1 1 2 35 0

100 5 0.055 30 2 1 2 93 0

10 10 0.085 28 2 3 1 8 1

50 10 0.055 27 1 4 2 50 0

75 10 0.055 27 1 4 2 56 0

100 10 0.055 27 0 4 2 36 0

10 inf 0.085 28 2 3 2 32 0

50 inf 0.055 27 1 4 2 56 0

75 inf 0.055 27 1 4 2 65 0

100 inf 0.055 27 1 4 2 72 0

generates 12 false warnings in the real-world data. This inspires

future work to concentrate more on the performance of the stixel

tracking and collision analysis modules, and provide an in-depth

analysis on feasible object sizes and velocities.
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