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Abstract— This work contributes to vision processing for
Advanced Driver Assist Systems (ADAS) and intelligent ve-
hicle applications. We propose a color-only stixel segmentation
framework to segment traffic scenes into free, drivable space
and obstacles, which has a reduced latency to improve the
real-time processing capabilities. Our system learns color ap-
pearance models for free-space and obstacle classes in an online
and self-supervised fashion. To this end, it applies a disparity-
based segmentation, which can run in the background of the
critical system path, either with a time delay of several frames
or at a frame rate that is only a third of that of the color-based
algorithm. In parallel, the most recent video frame is analyzed
solely with these learned color appearance models, without an
actual disparity estimate and the corresponding latency. This
translates into a reduced response time from data acquisition
to data analysis, which is a critical property for high-speed
ADAS. Our evaluation on two publicly available datasets, one
of which we introduce as part of this work, shows that the
color-only analysis can achieve similar or even better results
in difficult imaging conditions, compared to the disparity-only
method. Our system improves the quality of the free-space
analysis, while simultaneously lowering the latency and the
computational load.

I. INTRODUCTION

In recent years, vehicles are becoming increasingly intel-
ligent with so-called Advanced Driver Assistance Systems
(ADAS). This development is expected to significantly re-
duce traffic accidents, traffic congestion and fuel consump-
tion simultaneously. To ensure traffic safety, ADAS can e.g.
indicate the location of potentially hazardous obstacles to the
driver and the position of safely drivable road. On the longer
term, ADAS and related technologies will allow the develop-
ment of fully autonomous vehicles. In this work, we improve
a state-of-the-art vision-based free-space detection system by
exploiting multiple image modalities in an efficient way.

To robustly facilitate situational awareness at a moving
platform, several complementary sensor modalities should
be employed. These modalities can include RADAR, LI-
DAR, ultrasound, and (thermal) imaging. The benefit of
using vision-based systems is that they provide dense scene
information in a cost-effective way. Image data is also a
rich source of information, since it comprises of several
informative properties. For stereo-based video imaging, these
informative aspects include not only the usual texture, color
and shape features, but also optical flow motion analysis
and disparity estimation. All these elements can contribute
to a robust situational analysis, such as e.g. the detection
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Fig. 1. Stixel segmentation results comparing disparity-only (top left), fused
disparity and color (bottom left), and our new color-only (bottom right)
analysis. The orange overlay with a dark border depicts space occupied by
obstacles according to the detection algorithm. At the top right, the disparity
signal is shown, which has several artifacts due to low texture in the road
region and sun reflections in the windshield (middle). These artifacts cause
false obstacle detections in the original disparity-based algorithm [1]. These
errors have been resolved in the fused method presented in [2]. Here, we
show that it is possible to obtain similar results as the fusion method, while
requiring less data in the process.

of partially occluded pedestrians who are about to cross
the street. Although LIDAR, RADAR or ultrasound provide
valuable complementary information, in this work we solely
focus on vision-based detection systems.

Related work already indicates the use of vision-based
ADAS in practice. These are mainly monocular systems that
detect pedestrians [3], lane markings [4], or traffic signs [5].
Fully autonomous vehicles require more dense, accurate,
and reliable sources of scene information, in particular 3D
information. The current challenge in vision-based ADAS is
to deliver comparable semantic 3D scene information at a
more affordable price point than that of typically used high-
end laser-based systems (accompanied by RTK-GPS) [6][7].

Multi-view image processing, in particular stereo vision,
has the potential to fulfill these requirements. In stereo
vision, the disparity, which is analogous to depth, can be
estimated densely and in real-time [8]. This gives a direct
description of the geometry of the scene and it facilitates,
for example, a separation of flat, drivable surfaces from erect
obstacles [9][10]. The Stixel World method [1] is a state-
of-the-art approach for such a geometry description of the
scene. It is a fully probabilistic framework to distinguish
free-space from obstacles in the disparity signal, which can
be implemented efficiently given several assumptions. This
framework is generally more flexible and more robust than
its predecessors.

A pitfall of the original Stixel World framework is that



it requires a disparity signal of a certain quality. However,
the quality of disparity estimation often degrades in cases of
occlusions, reflections or image regions with too little texture
information, which are common in traffic scenery. As a result
of this degraded signal, the original Stixel World framework
detects many false obstacles, rendering the results useless for
a practical system under adverse conditions. An example of
this is shown at the top-left image of Fig. 1. In our recent
work [2], we show that the performance of that disparity-
based framework can be improved by fusing color into the
algorithm. This strategy resolves many erroneous results of
the disparity analysis at a low additional computational cost,
in contrast to alternative solutions such as a high-quality
camera or more advanced disparity estimation techniques.
The benefit of this earlier work is shown at the bottom-left
image of Fig. 1.

A key property of any ADAS is the response time, i.e.
the time delay between data acquisition and the response to
the result of the analysis. Since ADAS preferably need to
function at high vehicle speeds, the response time of such
systems should be as fast as possible. Hence, any delay
that can be removed from the critical path of the analysis
is beneficial to the value and applicability of the system,
provided that it does not degrade the reliability of the results.
Therefore, we will explore the possibility of removing the
disparity analysis from the critical system path. Although
there exist fast disparity estimation methods [8][11], this
typically either requires relying on sub-optimal algorithms,
processing at a low resolution, or acquiring customized
hardware that is not commonly available. To illustrate this,
even in the state-of-the-art system presented in [1], the
dedicated FPGA disparity estimation takes 40 ms per frame,
whereas the stixel analysis of the data takes 30 ms, when
executed on a general, high-quality multi-core CPU.

Therefore, we will not rely on strong fusion of disparity
and color in this work, even though the result presented in [2]
clearly shows the qualitative benefits of that. In contrast, we
propose here to process the most recent camera frame using
an efficient color-only stixel segmentation. The disparity
estimation and analysis, which is only required for our online
color modeling, can be processed in parallel and at a lower
frame rate. An example of our color-only results is shown at
the bottom-right image of Fig. 1, which is very similar to the
results that require disparity within the stixel segmentation.

An alternative to online color modeling is offline model-
ing [12], which would completely remove the need for online
disparity estimation. However, we have a strong preference
for an online learning approach, given the challenging nature
of traffic environments, which is full of varying weather
conditions, complex scenery, varying geographical settings
and highly dependent on the time of the day. For instance,
urban traffic scenes tend to contain predominantly gray-tones
in low-light situations. We consider it more feasible to build
a robust, yet discriminating color model that is tuned to that
specific time and place, rather than building a generic model
that holds for every environment and weather condition.

The remainder of this paper is structured as follows. First,

we will provide a short description of the disparity-based
Stixel World in Section II, since it serves as a basis of
our work. Then, in Section III, we summarize the methods
and results of our extended Stixel World with strong data
fusion as presented in [2]. Section IV presents our main
contributions based on [2], where we explain our new color
modeling strategies. In Section V, we elaborate on our
evaluation approach, including our publicly available dataset,
experiments and results. Lastly, conclusions are provided in
Section VI.

II. THE DISPARITY STIXEL WORLD

Let us now give a short overview of the Stixel World
framework from [1], which we use as a basis of our work.
The main goal of stixel segmentation is to find the optimal
labeling L∗ of vertically stacked, piecewise planar ground or
obstacle segments for the input disparity data D. Finding L∗

can be formulated as a MAP estimation problem as speci-
fied in (1), which can be solved efficiently using Dynamic
Programming. Using Bayes’ theorem and assuming, among
other things, independence between columns and between
disparity measurements at individual pixels, the posterior
probability can be written according to (2). Here, u is the
column index and w the image width. The probability P(Lu)
models a-priori world knowledge constraining the labeling,
to avoid dispensable segments and physically unlikely situa-
tions. This world model offers a way to regularize the results
for image-column optimality, whereas the methods of [9]
and [10] potentially lead to sub-optimal results, since they
mostly analyze data locally. The details concerning P(L) are
presented in [1]. Finally, the specification in (3) provides the
likelihood of the data given a certain labeling, where n is the
segment index, Nu the number of segments in Lu, and vb

n and
vt

n the bottom and top row-index, respectively, of segment sn.
This segment has a label ln ∈ {g,o}, representing the ground
and obstacle classes, respectively. The previously specified
equations are given by:

L∗ = argmax
L∈L

P(L|D), (1)

P(L|D)∼
w−1

∏
u=0

P(Du|Lu) ·P(Lu), (2)

P(Du|Lu)∼
Nu

∏
n=1

vt
n

∏
v=vb

n

P(dv|sn,v). (3)

The distribution P(dv|sn,v) as specified in (3) represents the
probability of a single valid disparity measurement dv at a
certain row v, assuming that it would belong to a potential
segment sn. It consists of a mixture model containing a
uniform distribution that models outliers, and a Gaussian
distribution that models inliers, to assess how well the
measurement fits the potential segment for each class. For
ground segments, the expected disparity is a linear planar
surface and for obstacle segments a fronto-parallel surface.



III. COLOR EXTENSIONS

The key idea of our previous work [2] is to increase the ro-
bustness of the system against adverse conditions such as low
light, bad weather, or a low-quality sensing system. These
conditions are common in real-world scenarios, but typically
degrade the disparity signal. In the original framework, a
degraded disparity signal leads to the detection of many
false obstacles, rendering the results useless for a practical
system under adverse conditions. To address this issue, we
have included a color component P(cv|sn,v) in the original
likelihood function of [1], as specified by (3), which results
in the following likelihood:

P(Du,Cu|Lu)∼
Nu

∏
n=1

vt
n

∏
v=vb

n

P(dv|sn,v) ·P(cv|sn,v), (4)

thereby treating disparity and color as independent signal
modalities. The rightmost term P(cv|sn,v) captures the proba-
bility of a certain color measurement given a certain segment.
In [2], this term is simplified to P(cv|sn,v) = P(cv|ln), under
the assumption that the probability only depends on the label
of the segment under evaluation, and not on its position v
or other colors in the segment. Therefore, P(cv|ln) can be
directly realized by computing and normalizing a color
histogram for each class. By calculating that histogram in
an online fashion, the color modeling is highly adaptive to
the currently relevant traffic situation.

Based on our experiments in [2], we have concluded
that the optimal tradeoff of design choices for the online
color modeling is considering to (a) quantize the RGB
color space with 64 values, obtained with minimum variance
quantization [13], (b) rely on the 10 most recent frames
as the online learning window, and (c) selectively adopt
online-training samples for free-space data from the whole
segmentation mask, but select samples for obstacles data only
below the horizon.

IV. COLOR-ONLY ANALYSIS

The main contribution of this work explores the possibility
of solely relying on color for the analysis of the most
recent camera frame. The goal of this strategy is to reduce
the delay between data acquisition and data analysis. Our
approach facilitates this in two ways. Firstly, the disparity
estimation can be removed from the critical path, as it
is not required for the analysis of the most recent frame.
Secondly, the analysis of one signal modality is less complex
than analyzing two signals simultaneously. The basis of our
approach is the online self-supervised learning method as
described in Section III. This method processes preceding
stereo frames and generates a free-space vs. obstacle labeling
based on disparity. Consecutively, this labeling is exploited as
self-supervised training masks for the color representation for
these two classes. Our research addresses two sub-problems:
(a) finding a color representation that is informative enough
to separate free-space from obstacles and yet sufficiently
suited for online processing, and (b) defining an efficient and
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Fig. 2. Our proposed system diagram. Note that the disparity-supervised
color modeling in the lower part of the scheme can be lagging or run at a
lower frame rate than the critical path. The range of the Learning Window
can be varied.

robust color-based cost term for within the stixel framework.
These problems are addressed in the next subsections.

A. Relative Color Representation

In line with the recommendations made in [2], we employ
indexed RGB colors that are adapted online to the frames
in the learning window for an efficient and yet descriptive
representation. In the Stixel World model, each stixel has a
fixed width wstix, meaning that a stixel spans several image
columns. This increases the robustness and decreases the
computational load at the cost of horizontal resolution in the
labeling. There are several strategies to condense the image
columns into a single stixel data vector. We propose and
evaluate three methods below for doing this.

Firstly, we take the mode over indexed RGB values for
each image row in a [wstix×wstix] window, located at the
central image column of each stixel. Since we work with
color indices, taking the mode is the most straightforward
method of getting a robust, representative value.

Secondly, we also add color variation to the modeling,
instead of only considering absolute color. The reason is that
relative information may also be descriptive in our case, since
free-space areas tend to be more homogeneous than obstacles
such as cars, pedestrians and houses. Therefore, we combine
the first color mode with local edge strength, to assess both
absolute and relative color information. We measure local
edge strength using Sobel filter responses, averaged over a
[wstix×wstix] window.

Thirdly, we extend the relative color representation by
specifically modeling color pairs instead of measuring color
variation. To this end, we calculate both the first and the
second mode in a [wstix×wstix] window (in homogeneous
areas, the first and second modes are equal). This makes
the relative color modeling more informative and more
discriminative, as it considers both local color homogeneity
and specific color pairs. The latter aspect is not accounted
for when using local edge strengths.

B. Distance-aware Color Analysis

The stixel optimization process relies on probability dis-
tributions, as described in Section II. Therefore, we need to



define the color-only likelihood function, specified by

P(Cu|Lu)∼
Nu

∏
n=1

vt
n

∏
v=vb

n

P(cv|sn,v), (5)

which is analogous to the specifactions of (3) and (4).
The term P(cv|sn,v) should capture the probability of a

certain color measurement given a certain potential free-
space or obstacle segment. In [2], this term is simplified
to P(cv|sn,v) = P(cv|ln), under the assumption that the
probability only depends on the label of the segment under
evaluation, and not on its position v. This leads to a mixture
model with a uniform distribution with probability pout to
model outliers and a normalized histogram per class over all
color bins with probability Ph(c|l).

The key contribution of this paper is to add distance-
awareness to the histogram-based color modeling. This is
motivated by the basic phenomenon that camera images
naturally suffer from geometric, perspective distortion. Effec-
tively, pixels representing areas close to the camera contain
a smaller real-world surface than pixels representing areas
at a large distance. Therefore, surfaces that are close to the
camera dominate in regular histograms, which contain only
basic pixel counts. This imbalance can result in inaccurate
color modeling of far-away obstacles.

The first step in adding distance-awareness to the color
modeling is to weight each pixel with its corresponding real-
world surface during the process of calculating a weighted
color histogram Pwh(c|l). This results in a histogram that is
more balanced towards obstacles at a large distance. To avoid
that this leads to false obstacle detections close to the camera,
we use both the regular and the distance-weighted histogram
for defining the distance-aware posterior distribution PDA:

PDA(ln|cv,v) = (1−αw(v)) ·Ph(ln|cv)+αw(v) ·Pwh(ln|cv).
(6)

Here, αw(v) is a factor in the interval [0,1] to leverage the
regular and the distance-weighted color posteriors, which are
calculated from the corresponding histograms using Bayes’
rule. We define αw(v) empirically as the mean of a linear
function and the real-world pixel length at row v. In our
stereo-camera framework, the pixel size and its correspond-
ing length can be determined from the disparity signal and
the camera parameters. Since we have removed the disparity
estimation from the critical path, we have to rely on a
disparity signal from at least one frame earlier. Fortunately,
the differences between consecutive frames are small and, on
top of that, they are smoothed by the probabilistic nature of
our processing. We rely on a fixed linear ground-plane model
to fill any holes in the disparity map prior to determining
pixel sizes. Fig. 3 illustrates these steps and their effect on
the posterior distribution.

Note that our strategy of making the processing distance-
aware cannot be achieved by simply computing histograms
using a Bird’s Eye View (BEV) representation of the image.
A BEV representation can work for the ground plane, but
it heavily distorts the area of obstacles, since it projects
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Fig. 3. Illustration of the proposed depth-aware processing (DA). Top row:
the brightened camera image (left) with the corresponding disparity signal
(right). Middle left: the distance image, where holes are filled in using a
static, linear, ground-plane assumption. The distance saturates at 35 meters.
Middle right: the corresponding real-world surface of each pixel, where the
quadratic course of pixel surfaces is visible in the colorization. Bottom row:
the posterior for the obstacle class without (left) and with DA (right).

all image pixels onto the same flat plane. In contrast, our
approach models each pixel surface individually, leading to
a more accurate representation of obstacles in the histograms.

V. EVALUATION

This section evaluates the performance of the proposed
color-based free-space scene segmentation. All our results
will be compared both to the disparity-only baseline ap-
proach of [1] and to the color-extended method of [2].

A. Test Setup

We employ two datasets for the validation. The first one is
the EHV-road-ITSC14 dataset from in [2]. The second one,
EHV-road-ITSC15, is newly introduced in this paper.

Both datasets are acquired in an urban environment, using
a BumbleBee2 camera, mounted behind the windshield of
a car, just below the rear-view mirror. The camera has a
baseline of 12 cm, a resolution of 1024×768 pixels and a
frame rate of 20 Hz. Both datasets are publicly available1.

Whereas EHV-road-ITSC14 contained both frames with
bright and dim lighting conditions, EHV-road-ITSC15 is
solely focused on dark, clouded, low-light and rainy frames.
It consists of 114 frames that have a road and a free-space
annotation (road including pavement, grass, etc.). For each
annotated frame, the 10 preceding frames are also available
to facilitate the online color modeling. The sequences are
selected in such a way that they do not contain windshield
wipers or obstacles in close proximity that would hamper
appropriate disparity estimation. The two datasets combined
contain a large variety of relevant traffic situations, such
as crowded streets, road repair sites, large crossings and

1http://www.willemsanberg.net/research



highways. They contain asphalt as well as paved roads of
several colors (black, gray, red).

To obtain disparity measurements, we employ a multi-
threaded version of the OpenCV implementation of the
Semi Global Block Matching algorithm of [14] with similar
settings as [2]. We have set the bounds of the disparity
estimator to dmin = 1 and dmax = 48. Additionally, we employ
a winner margin of 20 to force the algorithm to provide
only measurements with a high confidence at the cost of a
reduced density in the disparity signal. This is beneficiary
for the baseline Stixel World method, since it can handle
missing values better than erroneous ones. This can be
seen as a simplification of the work from [15], in which
disparity estimates are accompanied by a confidence measure
to adaptively set an outlier probability. In our approach, this
confidence is binary with a threshold on the winner margin.

As described, our camera has lower resolution and a
smaller stereo-baseline than, for example, the camera used
for the original Stixel World [1], resulting in lower quality
disparity estimates. To compensate for this deficiency and
to obtain more favorable results for the baseline method,
we have made improvements to the baseline framework, as
presented in [2]. For example, we learn the ground-plane
model online instead of using a single fixed model and have
tuned the label-based transition probabilities defined in P(L)
to boost the performance of the baseline method even further.

In our experiments, we have adopted a stixel width of
11 columns and subsample the disparity and color signals
vertically with a factor of 3, prior to segmentation. Note that
we exploit the full-image data to compute look-up tables
and color models, which is comparable to the approach
in [1]. At present, the version of the proposed color-only
Stixel World method is a MATLAB-based implementation.
For a real implementation in C/C++, we have estimated that
the complexity is comparable to that of the disparity-only
baseline, so that real-time executions can be obtained [1].

B. Scoring Metric

As a key quantitative analysis method, we propose to eval-
uate the detected free-distance per stixel. For each stixel, we
calculate the true free-space from the hand-made drivable-
surface annotation. For this process, we rely on a static
linear ground-plane assumption, effectively translating an
image row-index to a distance. For the detection results, we
calculate the deviation as a percentage of the true free-space.
For robustness reasons, free-space detections are counted as
correct when they are within the range of 30% too short
or 15% too long. This asymmetrical range reflects the fact
that missing an obstacle is more dangerous than detecting
one too close. For the same reason, we distinguish the
incorrect stixels into obstacle misses (free space too long)
and false obstacle detections (free space too short). Note that,
although a deviation of 30% may seem a lot, it corresponds
to only a couple of pixels after several meters (and only some
centimeters before that).

In essence, this metric is comparable to our drivable-
distance metric in [2], but at a finer horizontal resolution,

since it uses the width of a stixel instead of the width of
a car. The latter is rather coarse for in-depth analysis. A
single false obstacle nearby heavily degrades the achieved
recall, and detecting a big obstacle only in a single stixel
already results in a high precision of the drivable distance.
Our new stixel-resolution metric provides a more detailed
insight about the best settings for obtaining reliable results.

C. Experiments and Results

This section presents the experiments assessing the color
representation and the distance-aware processing of our
Color-only Stixel World framework, together with their
quantitative results. Fig. 4 shows qualitative results of our
best method in comparison with the results of the disparity
baseline. It can be seen that our color-only stixel algorithm
provides similar or even better results with respect to the
disparity method. In the bottom-right case, the artifacts in
the disparity segmentation are consistent throughout the full
learning window. This causes the image areas with light
reflections to be modeled as obstacles in the color model,
leading to false obstacle detections in our color-only analysis.

The quantitative results of our most relevant experiments
are shown in Fig. 5. Note that we show the results for the
two different datasets separately (middle and right graph) and
combined (left graph). First of all, since our new metric is
more strict and considers a larger range, our previous work,
the Extended Stixel World (run b), obtains a lower score.
The earlier algorithm was tuned to reduce the number of
false detections. This is confirmed by the graph in Fig. 5,
which shows that the percentage of stixels with false obstacle
detections is reduced. However, the number of stixels with
missed obstacles increases, resulting in a lower number of
correct stixels. With our new method, which considers color
pairs and is distance-aware (run k), the total number of
correct stixels is increased significantly compared to the
fused method (run b) and even, although to a smaller extent,
compared to the disparity baseline (run a).

Fig. 6 provides a detailed comparison between the results
of the disparity-color fusion method and our new color-
only method without and with distance-aware processing.
The figure clearly shows that the fusion method tends to
miss parts of obstacles, specifically at large distances, where
the uncertainty in the disparity signal is high and the color
contrast is typically low. Our new approach with a more
informative color modeling reduces these errors to a large
extent. On top of this, the distance-aware processing gives a
further improvement and makes the results more consistent.
The added value of DA is also visible quantitatively in Fig. 5,
by comparing runs i, j and k to f, g and h, respectively.

The best free-space segmentation results are achieved by
using a combination of histogram equalization, color pairs,
and distance-aware color processing (run k). For these set-
tings, we have evaluated several learning window parameters.
Two exemplary results are provided in Fig. 5, using only
frames t − 10 to t − 3 (disregarding the two most recent
frames, run l), or using the full range (t− 10 to t− 1), but
at a lower frame rate by skipping two of every three frames



Fig. 4. Qualitative results of our proposed method (HEQ; Mode1&2; DistAw). Each cluster picture contains four (input and result) images. The top two
images show the rectified and cropped left camera image and the corresponding disparity image. The bottom two images show the disparity baseline result
(left) and our new improved result (right). The green line indicates the border of the ground-truth annotation of the drivable surface. In the disparity-based
result, the stixels are colored by their depth (red (close) to blue (far)). In the color-only results, a homogeneous overlay of the detected obstacle region is
visualized. All cluster pictures show that our color-only results provide similar or better results in various situations. The bottom-right picture illustrates a
case were our color-modeling cannot resolve all artifacts in the disparity-based learning window.

(run m). Both runs l and m provide very similar results to
run k. This illustrates the robustness of our method with
respect to the online training strategy. Our algorithm does
not require all preceding frames and does not require the
directly preceding frames for the current evaluation. This is
an important result, since it shows that we can remove the
disparity estimation from the critical path to lower the com-
putational requirements for real-time processing of ADAS. It
is worth noticing that our method achieves the highest results
on the new dataset with very low-light conditions (right graph
in Fig. 5). This shows that color can be exploited reliably in
situations that are difficult to handle with disparity alone.

VI. CONCLUSIONS

We have presented a framework for color-based free-
space vs. obstacle segmentation. Our system learns color
appearance models for free-space and obstacle classes in
an online and self-supervised fashion. To this end, it ap-
plies a disparity-based segmentation, which can run in the
background of the critical system path, either with a time

delay of several frames or at a frame rate that is only a
third of that of the color-based algorithm. In parallel, the
most recent video frame is analyzed solely with these learned
color appearance models, without an actual disparity estimate
and the corresponding latency. This translates into a reduced
response time from data acquisition to data analysis, which
is a critical property for high-speed ADAS. Our algorithm is
based on two key contributions: (i) an informative color-pair
representation using the first and second mode of an online-
adapted indexed color space, and (ii) distance-aware color-
histogram processing, based on real-world pixel surfaces. We
have evaluated our contributions on two publicly available
datasets, one of which is newly introduced in this paper. This
evaluation shows that the color-only analysis can achieve
similar or even better results in difficult imaging conditions,
compared to the disparity-only method or the disparity-
color fusion method. In conclusion, our system improves
the quality of the free-space analysis while simultaneously
lowering the latency and the computational load.
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Fig. 5. Quantitative results of free-space segmentation for the baselines and several of our runs. The color experiments all rely on the indexed RGB color
space and most of them apply histogram equalization before processing (HEQ). The learning window parameters are indicated with LW start:step:end. If
not indicated otherwise, the learning window is LW10:1:1, meaning that it it uses all 10 preceding frames. Run ’l’ (LW10:1:3) disregards the two previous
frames, run ’m’ (LW10:3:1) skips two frames out of three. Runs ’i’ to ’m’ exploit our distance-aware histogram processing (DistAw).

Fig. 6. Qualitative results of free-space segmentation at a large distance to compare the strong fusion method of [2] with our proposed DA color-only
method. The top row shows several original images where the area of interests are indicated with a red box. The first four frames are from the EHV-
road-ITSC14 dataset. The other four are from the new EHV-road-ITSC15 dataset and are brightened for visualization. The strong fusion method can lead
to undetected obstacles due to high uncertainty in the disparity signal combined with low contrast in the color signal (second row). Using histogram
equalization and color pairs improves those areas (third row). The bottom row shows the added value of the distance-aware processing, which increases
the consistency of the analysis in these difficult imaging conditions.
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