Flexible Multi-modal Graph-Based
Segmentation

Willem P. Sanberg!, Luat Do, and Peter H.N. de With!

Eindhoven University of Technology, The Netherlands,
w.p.sanberg@tue.nl

Abstract. This paper aims at improving the well-known local variance
segmentation method by adding extra signal modi and specific process-
ing steps. As a key contribution, we extend the uni-modal segmentation
method to perform multi-modal analysis, such that any number of sig-
nal modi available can be incorporated in a very flexible way. We have
found that the use of a combined weight of luminance and depth val-
ues improves the segmentation score by 6.8%, for a large and challeng-
ing multi-modal dataset. Furthermore, we have developed an improved
uni-modal texture-segmentation algorithm. This improvement relies on
a clever choice of the color space and additional pre- and post-processing
steps, by which we have increased the segmentation score on a challeng-
ing texture dataset by 2.1%. This gain is mainly preserved when using a
different dataset with worse lighting conditions and different scene types.

Keywords: Multi-modal Signal Analysis, RGBD Segmentation, Graphs

1 Introduction

Segmentation of images has been a topic of research for many years in the field
of computer vision. Over the years, increasingly complicated features or texture
descriptors have been developed to improve the segmentation of interesting ob-
jects in two-dimensional (2D) texture images. This segmentation often serves as
a basis for semantic labeling in applications such as object recognition, object
tracking and event detection in security or sports video, cancer detection, etc.

However, texture segmentation has two fundamental limitations. First, a key
issue in texture segmentation is that not all objects have clear, distinctive tex-
ture borders, leading to under-segmentation. For example, its is hard to a isolate
a white cabinet in front of a white wall. Second, not all texture borders corre-
spond to interesting object contours, depending on the application. For instance,
shadows or texture with high variance can lead to over-segmentation.

These problems can be partially addressed by using multi-modal signal ana-
lysis. Recently, there has been a growth in multi-modal visual sensor systems
that capture depth signals alongside 2D texture images, providing information
on the geometry or shape of a scene. This facilitates, inter alia, detecting the
white cabinet and neglecting the shadows, based on the change and invariability
of the local geometry, respectively. To realize these benefits, new multi-modal

segmentation algorithms are required. For this purpose, we need a segmentation
structure in which we can flexibly incorporate texture and shape information.
Segmentation graphs meet these demands. A graph consists of vertices and edges
that connect these vertices. Vertices can contain RGB or grayscale values [4, 5],
feature values [3], or shape information such as depth or orientation with respect
to a viewpoint [9]. The edges have one or more weights, reflecting (dis)similarity
between the connected vertices. Weights can be customized in many ways [3-5,
9]. Graphs can be defined over multiple scales [5], or provide hierarchical segmen-
tation [5]. This makes graphs flexible to incorporate information from multiple
signal modi. Moreover, graph structures can be implemented and segmented effi-
ciently [4]. In the survey of Peng et al. [6], several graph-based texture segmenta-
tion methods are discussed and compared. From their quantitative analysis, the
authors conclude that the method of Felzenszwalb and Huttenlocher [4] (Local
Variance Segmentation, LVS) performs best in extracting the key structures in
an image, especially when there are many objects present, and has the best av-
erage segmentation quality. Furthermore, the complexity of LVS is low, making
it an attractive method to build upon.

By extending the LVS method, this paper addresses two related contribu-
tions. First, we extend the uni-modal segmentation method (LVS) to perform
multi-modal analysis, such that any number of signal modi available can be
incorporated in a very flexible way. Second, we experiment with several pre-
processing steps for the texture information, which improves the results of the
uni-modal LVS algorithm.

The remainder of this paper is divided as follows. The uni-modal baseline
method is explained in Section 2 and we present our improvements in Section 3.
We evaluate our contributions with several quantitative experiments, described
in Section 4, the results of which are presented in Section 5. Our conclusions, a
discussion and recommendations for future work are presented in Section 6.

2 LVS for Uni-modal Segmentation

A graph G = (V, E) consists of vertices (v; € V) that are connected by edges
(e = (v;,vj) € E) that all have a weight w(e). Segmenting a graph is the problem
of finding disjoint subsets S; such that |J, S; = V. Ideally, the segments S;
represent areas of interest. In general, the first step of graph-based segmentation
is to initialize V' and E. The second step consists of selecting one or more seed
points. The last step is the merging and labeling process. In the context of 2D
texture images, the vertices are pixels that have edges to their neighbors. The
weights are typically a measure of dissimilarity of the connected vertices, such
as, e.g., the absolute difference in pixel intensity.

Felzenszwalb and Huttenlocher [4] designed their algorithm to result in a seg-
mentation that is neither too coarse nor too fine, using the following definitions:
(1) a segmentation is too fine when, among S;, there are neighboring segments
without evidence of a border between them; (2) a segmentation is too coarse if
there is evidence of a boundary in at least one S;. To generate this segmenta-

tion, Felzenszwalb et al. define the difference between segments, Extr (S, S2),
as the minimal edge weight connecting the segments. Furthermore, they define
the variation within a segment, Intr(S1), as the maximum edge weight in the
Minimal Spanning Tree (MST) of the segment. Note that we add the subscript
T of "Texture’ here for clearer notation later in the paper.

Let us now describe the principal steps of their segmentation algorithm in
more detail. First, the graph is initialized with one vertex per pixel, where each
vertex has an edge to each of its 8 neighbors. The edges are weighted with the
intensity difference of the connected pixels. Furthermore, the segmentation is
initialized with one segment per vertex, all having an initial threshold of K,
which is a user parameter. In the next step, which is the seeding step, the edges
are sorted to their weight wy. Sorting is a crucial step, since it guarantees two
requirements for proper execution. First, the edge under evaluation is always
the connection with the lowest weight between two segments, which is equal to
Extr(S1,52). Second, the edge under evaluation is always the connection with
the highest weight within the new segment, which is equal to Intr(S7).

The last step, i.e. the merging step, executes a boundary check for all edges
in order of increasing weight. The boundary check Br(S7,S2) is false when the
following inequality holds:

K K
Extr (S, S5) < min <IntT(Sl) + FT',IHW(SQ) + |5T> , (1)
1 2

where |S;| denotes the size of a segment in pixels. If the boundary check is
false, the segments will be merged and the threshold of the new segment will
be set accordingly. From Eq. (1) we can see that parameter Kp enables small
segments to grow. For instance, when a segment contains just one pixel, its
internal difference is zero, so that merging is only allowed along edges with a
weight of zero. Choosing a large Kp makes it easier for segments to merge. Using
an appropriate K, regions with high detail can be segmented in small segments,
and regions with low detail can be segmented in large segments.

2.1 Shortcomings of LVS

The LVS algorithm suffers from two shortcomings. Firstly, LVS is a region-
growing algorithm that merges segments when a single low-weight edge connects
them. This can lead to under-segmentation, due to merging of adjacent pixels
with similar intensity, but belonging to different objects (leakage). This is par-
ticularly difficult to prevent when two objects share a smooth border. Secondly,
LVS allows small segments around noise and long thin segments around edges to
exist, which leads to over-segmentation. This can happen due to noise in pixel
intensities and blurry edges in combination with the seeding strategy of LVS.

3 Extending LVS to Multi-modal Segmentation (MLVS)

Let us now look at the integration of information from multiple signal modi into
the LVS segmentation algorithm. Since in multi-modal systems multiple signals

need to be processed simultaneously, it is necessary to adapt the initialization,
seeding and merging and labeling steps accordingly. First of all, in the initializa-
tion stage of LVS, each vertex v € V of graph G(V, E) is assigned an extra value
per mode in addition to its texture image pixel intensity. As a consequence, each
edge obtains one extra weight per mode. For example, an extra weight could
be the Euclidian distance between vertex normal vectors or depth values. Then,
for the seeding and merging steps of multi-modal signals, we identify two key
strategies: (1) defining partial boundary functions for each signal mode, and (2)
combining the different weights into a single weight and using a single boundary
function. In the following subsections, we will analyze these two strategies in
more detail.

3.1 Strategy 1: Partial Boundary Functions

In this approach, we first define a separate partial boundary function B,, for
each of the available M modes such that each partial boundary function should
reflect the nature of the signal. For example, when a depth signal is available,
a boundary check similar to Eq. (1) cannot be applied, since the depth value of
a single object varies, in contrast to its texture value. A better alternative is to
define a boundary check based on a constant threshold, instead of an adaptively
growing approach.

Second, we integrate these separate partial boundary functions in the frame-
work by defining a general boundary function B(Bji,..., Bas). This boundary
function is application-specific and should be designed carefully by the user. For
example, if a high boundary detection rate is required and all modi are equally
important, B can be implemented with a logical OR-function:

B(Bl,...,BM):Bl VByV...VBy. (2)

However, we are aware of the unequal nature of the partial boundary functions
for different modi. Due to this inequality, combining different signal modi into a
single boundary function will always be a compromise.

Since edges now have multiple weights, the sorting procedure in the seeding
step is no longer straight-forward. We have explored two methods for sorting
the weights: (1) sorting to the weights of a single mode, neglecting the other
weights, or (2) hierarchical sorting by ordering to the weights of one mode, and
within that list, sorting to the second mode. Both methods do not guarantee that
the edges are handled in order of non-decreasing edge weight Ext(.) in all modi
simultaneously, since the modi contain fundamentally different data. However,
the strength of combining multi-modal signals is in exploiting partly conflicting
information in different modi. The consequence of multi-modal sorting is that the
segmentation is no longer unique: each sorting strategy can result in a different
segmentation.

After a merge of two segments, the internal differences of the new segment
are updated using the weights of the edge under evaluation. This is independent
of the sorting method. Therefore, Int(.) only corresponds to the maximum value
in the MST for the mode that is sorted.

3.2 Strategy 2: Combining Weights

Our second approach to incorporate multiple weights is to combine them into a
single weight w¢:

M
Wm
we = § amA s (3)
m=1 m

where M is the number of modi and A is a factor to normalize the weights of
a mode to unity. For example, A = 255 for the luminance weight. The factor «
(3" o = 1) expresses the importance of a mode. In our experiments, we have
adopted a,,, = 1/M for all m.

In the seeding step, the edges are sorted to the value of we. In the merging
step, a boundary check analogous to Eq. (1) is applied, specified by:

Extc(S7,.52) < min <Intc(51) + %,In‘cc(bﬁ) + f?) . (4)
1 2

An advantage of this approach is that adding additional signals only requires
normalizing signal values and a difference metric that matches the nature of
the signal. In our experiments, we have obtained good results when we use the
absolute distance for scalar values and the Euclidian distance for vector values.

3.3 Pre- and Post-processing

Color Space In the LVS algorithm, graph edges are weighted by the difference
between pixel intensity values. A commonly used multi-modal capturing device is
the Kinect camera. The Kinect RGB sensor uses a Bayer mosaic filter, resulting
in a lower quality of the blue and the red signal component. This leads to over-
segmentation in the LVS algorithm. To reduce the effect of the Bayer filter, we
have adopted the luminance values (Y) of the YUV color space as the signal
mode used for texture.

Filtering The pre-processing step should reduce the noise within a segment but
not smoothen object borders, which is referred to as edge-preserving smoothing.
We have compared and evaluated three filtering approaches with an experiment
in Section 5.

The first approach is the well-known median filter. It is a nonlinear smoothing
filter that is often used to remove speckle noise, but it can also introduce false
contours. There are two key parameters: the size of the neighborhood and the
number of iterations that should be performed.

The second approach is Bilateral Filtering, which is a filtering technique
that convolves an adaptive kernel with the input image. For each pixel under
evaluation, the kernel weights decrease with the spatial distance and with the
intensity difference (both compared to the kernel center), providing the possibil-
ity to smoothen texture variation in areas on both sides of an edge separately.

This enhances the homogeneity of the region and at the same time preserves the
edge.

Third, Nonlinear diffusion filtering (NLDF) evolves an image L through in-
creasing scale levels. For edge-preserving smoothing, the authors of [7] and [10]
propose to make the diffusion a function of the local image gradient magnitude.
We test three of their NLDF approaches, using the implementation of [1].

Post-processing The results of LVS may contain segments of only a few pix-
els, which are often not of interest. Therefore, if a segment is smaller than
minSegSize, it is merged with its neighboring segment with the smallest Extr.

4 Segmentation Experiments

We have performed several experiments to show that we improve (1) the results
of LVS on texture with our adaptations and (2) the segmentation degree further
by using our extension to multi-modal signal analysis.

Texture Segmentation We analyze our texture segmentation performance
on the challenging Berkely Segmentation Data Set 500 (BSDS)!, presented in
[2] and consisting of RGB images with a wide variation of subjects (animals,
landscapes, buildings, people, etc.). The dataset contains 200 training and 200
test images with multiple, manually annotated ground truths. The final score is
the average score over all ground truths of an image. We will use this dataset
to evaluate our texture segmentation and to train the texture pre-processing
settings for the multi-modal signal analysis.

Multi-modal Segmentation NYU Depth dataset V2 (NYU)?2, presented in [8],
contains aligned texture/depth/normal-frames from a variety of indoor scenes
(kitchens, bedrooms, office spaces, stores, etc.), split into 795 training and 654
test frames. The texture and depth images are captured with a Kinect camera.
To create dense depth images, a hole-filling/inpainting algorithm is employed.
The normal images are estimated from the individual depth images, by back-
projecting depth points to 3D space and performing local plane fitting. For
quantitative analysis, this dataset also includes a ground-truth labeling.

Segmentation Metric To compare our results to the ground truth, Arbeldez et
al. provide several boundary-based and segment-based metrics [2]. We will focus
on the score on boundary detection but provide our final scores on all measures
for completeness. We measure Recall (R) and Precision (P) scores on edge pixels,

! BSDS dataset at http://www.eecs.berkeley.edu/Research/Projects/CS/vision/
grouping/resources.html
2 NYU dataset at http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html

where R is the ratio of true boundary pixels that are detected by the segmenta-
tion and P is the ratio of detected boundary pixels that match true boundary
pixels. We adopt the evaluation technique from [2], in which boundary pixels
match when they are within a distance of 2 pixels of each other.

However, in the NYU dataset, the ground-truth annotation is inaccurate at
object boundaries. The influence of inaccurate boundaries is low when the recall
of ground-truth regions is measured, as is performed by Silberman et al. [§].
In addition, over-segmentation in boundary areas will not considerably degrade
the precision score. However, it is our opinion that inaccurate boundaries and
over-segmentation in boundary regions should not be ignored. Therefore, we
pre-process the ground-truth annotations by thinning borders that are not an-
notated. Hence, since we have modified the dataset in this aspect, we cannot
compare ourselves anymore to experiments of others with the original dataset.
Instead, we can compare the mutual results of our different segmentation strate-
gies with the modified dataset.

Parameter Selection and Validation We have performed a parameter-range
search for each pre-processing method on the training set of BSDS. After this
training step, we select two sets of parameter settings: Or r,, a setting with the
highest unweighted harmonic mean F, for the improved texture segmentation,
and Or p, , a setting with the highest weighted harmonic mean F,,. We select
Or,F, such that it promotes P as a basis for multi-modal segmentation and aim
at increasing R by including detected boundaries from other modi.

To validate our training, we run our texture segmentation with ©r g, and
Or, Fr, on the test sets of both BSDS and NYU and compare it to the results of
the LVS method, all using the luminance Y as texture input. Next, we execute
our two multi-modal segmentation methods on the NYU test set. For this, we
use O r, and a number of different settings for depth, normal and angle modi.

5 Segmentation Results

Uni-modal Segmentation In our training results, Nonlinear Diffusion Filter-
ing with the Weickert Diffusivity function outperforms the other filtering meth-
ods. We have selected Or , as the tenth level of the evolution with a contrast
factor of 0.5 and Kt = 300, and O r, as the thirteenth level of the evolution
with a contrast factor of 0.5 and K+ = 1000.

We have executed both settings on the full test sets of BSDS and NYU to
check how generic the settings are. To provide precision-recall curves instead of
points, we have performed a range search over Kr while keeping the pre- and
post-processing settings constant. As a baseline reference, we also show the score
of the LVS method with luminance values Y as texture input. The results are
shown in Fig. 1, indicating that our trained settings perform consistently on the
BSDS test data. For the NYU test set, the results are less distinctive, but still
a slight improvement is achieved. This shows the robustness of our method, as
the parameters were not trained on the NYU images and this dataset has worse

lighting conditions and degraded image quality and also contains different types
of scenes. More importantly, it has an inaccurate ground truth.

1 1

0.9 0.9
0.8 0.8
0.7 0.7
A
0.6 = 0.6
5 s
305 805
o o
I o
0.4 0.4
0.3 0.3
0.2 iso 0.2 iso
——LVS-Y [Fu=0.594] ——LVS-Y [Fu=0.486]
0.1f| ——NLDF 07 5, [Fu=0.611] 0.1{| —a— NLDF 07, [Fu=0.491]
NLDF 07, [Fw=0.623] NLDF 07, [Fw=0.456]
00 01 02 03 04 05 06 07 08 09 1 GO 01 02 03 04 05 06 07 08 09 1
Recall Recall

Fig. 1. Boundary detection results on the BSDS (left) and NYU (right) test sets. The
settings used are O, and Or r,, with a range search over Kr to provide a curve.

Table 1. Boundary and region metrics of [2] on the BSDS test set

l ‘Boundary‘Region Covering‘Region PRI‘Region VI‘

LVS-RGB[0.55 0.46 0.79 3.27
LVS-Y | 059 0.50 0.75 2.47
Or.r, 0.62 0.49 0.75 2.45

The results of all metrics provided in [2] are presented in Table 1. Using YV
values instead of RG B triplets as texture input, increases the scores of LVS signif-
icantly. Our pre- and post-processing steps augment the score on the boundary
metric further, which is expected since we optimize our algorithm on bound-
ary detection. Simultaneously, our extensions do not degrade the scores on the
region-based metrics significantly. This again confirms the robustness of our
method.

To illustrate our contributions visually, we show the results on several BSDS
test images in Fig. 2. It is clear that our approach gives a cleaner and gener-
ally more accurate segmentation than the LVS method for various scenes. The
rightmost image, for which we score the lowest F),, is difficult for this LVS-based
method, as the regions have high texture variation and no clear edges.

Multi-modal Segmentation The quantitative results are summarized in
Table 2. Overall, our method based on the combined weight clearly outperforms
the method of using partial boundary functions. Using a combined weight of
luminance and depth values provides the best results.

Fig. 2. Images of the BSDS test set. For each image, we show the original image (top),
the result of LVS-Y (middle) and our result using Or,F, (bottom). The three images
at the left are selected from the top 6 (ranked on F), right is the bottom one.

However, several improvements are small or even negative. The cause of this is
analyzed with the graphs in Fig. 3 (b), where we plot the increase (or decrease)
for F,, R and P for each individual image and several different multi-modal
methods, with the texture segmentation Or r, as a reference. No image-index
correspondences exist, since the images are sorted on their score for each graph
separately. By plotting the scores in a sorted fashion, the graphs clearly show
that although we generally achieve an increase in recall, we decrease the preci-
sion at the same time. This limits the increase in the overall F,. Since we have
designed the multi-modal segmentation to increase the recall of a high-precision
texture segmentation, this confirms our expectations. However, it also shows
that our multi-modal segmentation methods are not applicable to all images.
For example, setting a maxDist in the partial boundary function helps distin-
guishing foreground from background objects when they have a similar texture.
At the same time, it introduces false boundaries on surfaces that are at an an-
gle with respect to the viewpoint. Similarly, normals provide additional object
boundaries, but introduce false detections easily, on e.g. wrinkled surfaces. This
is especially problematic in the noisy NYU data. Furthermore, it is striking that
using more than two signals does not increase the performance further. From
the we (Y, A) (green) and we (Y, D, A) (cyan, dashed) curves in Fig. 3 (b), it can
be seen that adding the third mode increases P but decreases R. This indicates
that a more sophisticated way of combining the different modi can potentially
boost the performance.

We show several practical results on NYU test images with our MLVS in
Fig. 4. This figure displays four images with ground-truth overlay. For each
image, we present the result of our texture segmentation and compare it to the

result of our multi-modal segmentation. Each image is marked in the graphs of
Fig. 3 (b). The leftmost image of Fig. 4 shows an example on which a good
increase in both F,, and P is achieved, by using the combined weight of the
luminance and angle signals. The highest increase in recall is obtained with the
second image, using partial boundary functions on the texture and the depth
signals. The third image shows a good performance of the most stable multi-
modal approach (using a combined weight of luminance and depth values). The
multi-modal segmentation performs worst on the fourth image, mainly due to
the normal signal that causes false boundaries on the wrinkled blanket.

Table 2. Multi-modal Segmentation Results

| Method [Key settings HFu—score[increase‘
LVS-Y max F, on BSDS 0.480
B(Y) Or.F, 0.490 2.1%
O1,F, 0.484 0.8%
B(Y, D) maxDist = 0.01 0.478 -0.4%
mazxDist = 0.15 0.490 2.1%
we (Y, D) D VLK.=2 0.512 6.8%
B(Y,N) Ky =20 0.440 -8.4%
we (Y, N) K.=2 0.497 3.6%
we (Y, A) K.=2 0502 | 45%
B(Y, D, N) [mazDist = 0.01; Ky = 20| 0.425 | -11.5%
maxDist = 0.15; Ky = 20| 0.439 -8.6%
we(Y, D, N) DL K.=2 0.500 4.2%
we (Y, D, A) D LK.=2 0.510 6.3%

6 Conclusions, Discussion and Future Work

This paper aims at improving the well-known local variance segmentation method
by adding extra signal modi and specific processing steps. To achieve this, we
have developed an improved uni-modal texture-segmentation algorithm. With
our choice of color space and additional pre- and post-processing steps, we have
increased the harmonic mean of recall and precision (F,) on the BSDS test set
from 0.59 to 0.62, based on training with the BSDS training set. The same set-
tings have improved the F,, metric on the NYU test set from 0.480 to 0.484,
even though this dataset has worse lighting conditions, degraded image quality
and also features different types of scenes.

Our second contribution extends this uni-modal segmentation method to
perform multi-modal analysis, by introducing a method that can process any
number of signal modi that are available in a flexible way. Based on the quanti-
tative analysis on the NYU dataset, the use of a combined weight of luminance
and depth values improves the F,, metric additionally from 0.484 to 0.512.

Increase in Fu Increase in R Increase in P

L [Lvs-Y [F=0.486] osh 1 o6 A o)
0.9 o | =W (Y) [F=0.490])
— 0. w(Y,D,A)
08 \ w(Y,D) [F=0.517] o
—a—w_(Y,N) [F=0.499] - - =B(rDN) i
\ WC(1 1 o Good Fu & P impr.
0.7 { WC(Y,A) [F=0.504] Best R impr.
i 0. Good stable perf.
06 T —+—W(Y.D\N) [F=0.502] % Worst multi-modal
§ \ | ——w_(Y,D,A) [F=0.511]
7] C
305 \ - -
o ' :
03f X R

0.2
0.1
0 N S S S S S S S
0 01 02 03 04 05 06 07 08 09 1 ™04 ‘ ‘ 1

(a) (b)

Fig. 3. (a): Boundary detection results on the NYU test set, using the combined weight
with different modi. (b): Individual increase in Fy (left), Recall (middle) and Precision
(right) by using additional signal modi with K. = 2. Values pare sorted for clarity, so
no image-index correspondences between graphs exist. The four images of Fig. 4 are
marked.

[\§

Fig. 4. Images of the NYU test set. For each image, we show the original image with
ground truth (top), our texture segmentation result (Or,r, , middle) and a multi-modal
result of interest (bottom); from left to right: we (Y, A4), B(Y, D), we(Y, D), B(Y, D, N).

To assess the value of some of the aforementioned results, it should be noted
that our uni-modal texture segmentation method does not outperform the state-
of-the-art method of Arbeldez et al. [2] on the BSDS test set. We have selected an
alternative graph-based method as a basis to extend it to multiple signal modi,
since the full framework of Arbeldez et al. [2] is elaborate and complicated for
multi-modal extensions.

We envision several possibilities for further improvement. First, although
we have improved the results of LVS with pre- and post-processing steps, we
consider that the seeding stage allows further optimization, such that all edges
are evaluated with a parallel, more global approach to avoid border isolation.
Second, the multi-modal algorithm should better exploit the different character-
istics of signal modi. For example, the depth signal should primarily be used for
separating foreground from background objects, and normals should mainly be
applied to detect object surface boundaries. To this end, the boundary check or
mode weight can be enhanced with e.g. the local confidence in a mode.

References

1. Alcantarilla, P., Bartoli, A., Davison, A.: KAZE Features. In: Eur. Conf. on Com-
puter Vision (ECCV). pp. 214-227. Springer Berlin Heidelberg, Fiorenze, Italy
(2012)

2. Arbeldez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical
image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence
(PAMI) 33(5), 898-916 (May 2011)

3. Cour, T., Benezit, F., Shi, J.: Spectral segmentation with multiscale graph decom-
position. In: IEEE comp. soc. Conf. on Computer Vision and Pattern Recognition
(CVPR). vol. 2, pp. 1124-1131. IEEE (2005)

4. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient Graph-Based Image Segmenta-
tion. Int. Journal of Computer Vision 59(2), 167-181 (Sep 2004)

5. Kropatsch, W., Haxhimusa, Y., Ton, A.: Multiresolution image segmentations in
graph pyramids. Applied Graph Theory in Computer Vision and Pattern Recog-
nition 41(2), 3-41 (2007)

6. Peng, B., Zhang, L., Zhang, D.: A survey of graph theoretical approaches to image
segmentation. Pattern Recognition 46(3), 1020-1038 (Mar 2013)

7. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion.
IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI) 12(7), 629-639
(Jul 1990)

8. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support
inference from RGBD images. In: Eur. Conf. on Computer Vision (ECCV). pp.
746-760. Springer Berlin Heidelberg (2012)

9. Strom, J., Richardson, A., Olson, E.: Graph-based segmentation for colored 3D
laser point clouds. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems.
pp. 2131-2136. IEEE, Taipei, Taiwan (Oct 2010)

10. Weickert, J.: Efficient image segmentation using partial differential equations and
morphology. Pattern Recognition 34(9), 1813-1824 (1998)

